Answer:
<h3>On a velocity vs time graph the slope of the line represents the acceleration of the object. With a slope of zero, the object is moving at a constant velocity in the positive (+) direction during this five minute interval. ... Displacement and distance can both be determine on a velocity vs.</h3>
<span>The loudness of the sound increases gradually as the air is slowly introduced in to the jar. This is because sound needs a physical medium and in a vacuum there is none. The air provides that medium and as it is introduced, the transfer of sound energy increases</span>
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
15 km 30 divided by 4 is 7.5 km in 30 min times that by 2 the answer is 15
When the comet is closest to the Sun,
it has its maximum kinetic energy
and minimum gravitational potential energy. When the comet is far away from the Sun, it has maximum gravitational potential energy and minimal kinetic energy. It's faster when it's close because the Sun's gravity is pulling the comet closer. The opposite for when it gets farther away