Answer:
d- Earth revolves around the sun.
Explanation:
Earth rotation can be defined as the amount of time taken by planet earth to complete its spinning movement on its axis.
This ultimately implies that, the rotation of earth refers to the time taken by earth to rotate once on its axis. One spinning movement of the earth on its axis takes approximately 24 hours to complete with respect to the sun.
On the other hand, earth revolution can be defined as a complete trip along a path around the sun. This path is known as an orbit and it typically takes the Earth 365¼ days to complete it's journey around the Sun.
When a constellation (stars) changes its position in the sky, at the same time of the evening and over a period of several weeks; it ultimately implies or is an evidence that Earth revolves around the sun.
Answer:
0.29 m/s due west.
Explanation:
According to newton's second law,
Net force acting on an object = mass×acceleration
From the question,
F+F₁+F₂ = ma................ Equation 1
Where F = The force generated from the engine, F₁ = Force exerted by the wind, F₂ = Force exerted due to the water, m = mass of the boat, a = acceleration of the boat.
Given: F = 4080 N , F₁ = -680 N(east), F₂ = -1160 N(east). m = 7660 kg
substitute into equation 1
4080-680-1160 = 7660(a)
2240 = 7660a
Therefore,
a = 2440/7660
a = 0.29 m/s due west.
"Pluto was the first dwarf planet to be discovered" is the one statement among the following choices given in the question that is true <span>about dwarf planets. The correct option among all the options that are given in the question is the first option or option "a". Pluto was classified as a planet at first but in the year 1930 it was classified as a dwarf planet.</span>
Retrograde. Planets seem to move forward and then backward sometimes. This is really because we pass them as we move in our orbit but astronomers wanted to try to describe the solar system with earth at the center so elaborate models were employed.
Answer:
f = 931.1 Hz
Explanation:
Given,
Mass of the wire, m = 0.325 g
Length of the stretch, L = 57.7 cm = 0.577 m
Tension in the wire, T = 650 N
Frequency for the first harmonic = ?
we know,

μ is the mass per unit length
μ = 0.325 x 10⁻³/ 0.577
μ = 0.563 x 10⁻³ Kg/m
now,

v = 1074.49 m/s
The wire is fixed at both ends. Nodes occur at fixed ends.
For First harmonic when there is a node at each end and the longest possible wavelength will have condition
λ=2 L
λ=2 x 0.577 = 1.154 m
we now,
v = f λ


f = 931.1 Hz
The frequency for first harmonic is equal to f = 931.1 Hz