Answer:
Wavelength = 1.36 * 10^{-34} meters
Explanation:
Given the following data;
Mass = 0.113 kg
Velocity = 43 m/s
To find the wavelength, we would use the De Broglie's wave equation.
Mathematically, it is given by the formula;

Where;
h represents Planck’s constant.
m represents the mass of the particle.
v represents the velocity of the particle.
We know that Planck’s constant = 6.6262 * 10^{-34} Js
Substituting into the formula, we have;


Wavelength = 1.36 * 10^{-34} meters
Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
is the acceleration of the object in
,
is the net force on the object in Newtons, and
is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be
. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
Answer:
atom(which contains protons, neutrons and electrons)
Explanation:
Distance covered by the particle is given by:
Distance (d) = rate (v) × time (t)
Speed of Mary, v₁ = 50 mph
Speed of Jim, v₂ = 60 mph
It is assumed that, Mary and Jim leave at the same time. After one hour, Jim is 10 miles ahead.
Distance travelled by Jim, d₁ = (60t + 10)
Distance travelled by Mary, d₂ = 50t
The distance between Mary and Jim is greater than or equal to 100 miles.



So, Jim takes is 9 hours more than Mary to cover same distance. Hence, this is the required solution.