Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
17) 8.4 / 20 x 100
18) 20 . 0.5150
19) 6,50% because (as you said) the law of definite proportions states that regardless of the amount, a compound is always composed of the same elements in the same proportion by mass
Answer:
OH−(aq), and H+(aq)
Explanation:
Redox reactions may occur in acidic or basic environments. Usually, if a reaction occurs in an acidic environment, hydrogen ions are shown as being part of the reaction system. For instance, in the reduction of the permanganate ion;
MnO4^-(aq) + 8H^+(aq) +5e-------> Mn^2+(aq) + 4H2O(l)
The appearance of hydrogen ion in the reaction equation implies that the process takes place under acidic reaction conditions.
For reactions that take place under basic conditions, the hydroxide ion is part of the reaction equation.
Hence hydrogen ion and hydroxide ion are included in redox reaction half equations depending on the conditions of the reaction whether acidic or basic.
Answer:
Before we get into the first law of thermodynamics we need to understand the relation between heat and work and the concept of internal energy. Just like mass, energy is always conserved i.e. it can neither be created nor destroyed but it can be transformed from one form to another. Internal energy is a thermodynamic property of the system that refers to the energy associated with the molecules of the system which includes kinetic energy and potential energy.
Whenever a system goes through any change due to interaction of heat, work and internal energy, it is followed by numerous energy transfer and conversions. However, during these transfers, there is no net change in the total energy.
Similarly, if we look at the first law of thermodynamics it affirms that heat is a form of energy. What it means is that the thermodynamic processes are governed by the principle of conservation of energy. The first law of thermodynamics is also sometimes referred to as the Law of Conservation of Energy
Explanation: