<u>Answer:</u> The concentration of solute is 0.503 mol/L
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

where,
= osmotic pressure of the solution = 24 atm
i = Van't hoff factor = 2 (for NaCl)
c = concentration of solute = ?
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the concentration of solute is 0.503 mol/L
Answer:
The correct answer is option b, that is, 2.1 M Na₃PO₄.
Explanation:
The solution with the largest concentration of ions will possess the highest conductivity.
a) 3.0 M NaCl
NaCl ⇔ Na⁺ + Cl⁻
Here the total number of ions is 2, therefore, the concentration of ions is 3.0 × 2 = 6.0 M
b) 2.1 M Na₃PO₄
Na₃PO₄ ⇔ 3 Na⁺ + PO₄³⁻
Here the total number of ions i 4. Therefore, the concentration of ions is
2.1 × 4 = 8.4 M.
c) 2.4 M CaCl₂
CaCl₂ ⇔ Ca²⁺ + 2Cl⁻
The total number of ions is 3. Therefore, the concentration of ions is
2.4 × 3 = 7.2 M
d) 3.2 M NH₄NO₃
NH₄NO₃ ⇔ NH₄⁺ + NO₃⁻
The total number of ions is 2. The concentration of ions will be,
3.2 × 2 = 6.4 M
Hence, the highest conductivity will be of 2.1 M Na₃PO₄.
<span>The volume of water that moves past a point on a river in a given time is called the river’s DISCHARGE or FLOW RATE. The flow rate is used to measure and study bodies of water to better understand how they work. It is useful in areas such as wastewater treatment. Water flow or velocity typically increases as the the depth or hydraulic radius of the river increases.</span>
Answer:
balsa wood
Explanation:
I think the answer is balsa wood.