1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
12

A boat travels with a velocity equal to 14.0 meters per second, east in 6.15 seconds. What distance in meters does the boat trav

el?
Physics
1 answer:
Y_Kistochka [10]2 years ago
6 0

Answer:

Distance, d is 86.1 meters.

Explanation:

Given the following data;

Time, t = 6.15secs

Velocity = 14m/s

Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.

Mathematically, velocity is given by the equation;

Velocity = \frac{distance}{time}

V = \frac{d}{t}

d = Vt

Substituting into the above equation;

d = 14 * 6.15

d = 86.1m

Hence, the distance traveled by the boat is 86.1 meters.

You might be interested in
Take schlatts love uwu (i cant spell)
7nadin3 [17]

thank you so much for the schlatt

8 0
2 years ago
Ten students stand in a circle and are told to make a transverse wave. What best describes the motion of the students? Each stud
Bond [772]

Lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students. Option D is correct.

<h3>What is a Transverse wave?</h3>
  • The wave in which the oscillation of particles is is perpendicular to the direction of energy transfer.

  • The students can make a transverse wave by raising their hands up and then down, one student at a time.

  • The raised hand represents the oscillation of particles while the sequence of the raising hand represents the direction of energy transfer.

Therefore, lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students.

Learn more about Transverse waves:  

brainly.com/question/3813804

3 0
2 years ago
Read 2 more answers
Two astronauts (each with mass 100 kg) are drifting together through space. They are connected to each other by a rope 5 m in le
Nana76 [90]

Answer:

1000 kgm²/s, 400 J

1000 kgm²/s, 1000 J

600 J

Explanation:

m = Mass of astronauts = 100 kg

d = Diameter

r = Radius = \frac{d}{2}

v = Velocity of astronauts = 2 m/s

Angular momentum of the system is given by

L=mvr+mvr\\\Rightarrow L=2mvr\\\Rightarrow L=2\times 100\times 2\times 2.5\\\Rightarrow L=1000\ kgm^2/s

The angular momentum of the system is 1000 kgm²/s

Rotational energy is given by

K=I\omega^2\\\Rightarrow K=\frac{1}{2}(mr^2)\left(\frac{v}{r}\right)^2\\\Rightarrow K=mv^2\\\Rightarrow K=100\times 2^2\\\Rightarrow K=400\ J

The rotational energy of the system is 400 J

There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

L_i=L_f\\\Rightarrow 2mv_ir_i=2mv_fr_f\\\Rightarrow v_f=\frac{v_ir_i}{r_f}\\\Rightarrow v_f=\frac{2\times 2.5}{0.5}\\\Rightarrow v_f=10\ m/s

Energy

E_2=mv_f^2\\\Rightarrow E_2=100\times 10\\\Rightarrow E_2=1000\ J

The new energy will be 1000 J

Work done will be the change in the kinetic energy

W=E_2-E\\\Rightarrow W=1000-400\\\Rightarrow W=600\ J

The work done is 600 J

5 0
3 years ago
A 3.00 kg block moving 2.09 m/s
Talja [164]

Answer:11.64kgm/s

Explanation:

4 0
2 years ago
I need help with this
fredd [130]
We have here what is known as parallel combination of resistors.

Using the relation:

\frac{1}{ r_{eff} } = \frac{1}{ r_{1} } + \frac{1}{ r_{2} } + \frac{1}{ r_{3} }.. . + \frac{1}{ r_{n} } \\
And then we can turn take the inverse to get the effective resistance.

Where r is the magnitude of the resistance offered by each resistor.

In this case we have,
(every term has an mho in the end)
\frac{1}{10000} + \frac{1}{2000} + \frac{1}{1000} \\ \\ = \frac{1}{1000} ( \frac{1}{10} + \frac{1}{2} + \frac{1}{1} ) \\ \\ = \frac{1}{1000} ( \frac{31}{20}) \\ \\ = \frac{31}{20000}

To ger effective resistance take the inverse:
we get,
\frac{20000}{31} \: ohm \\ = 645 .16 \: ohm

The potential difference is of 9V.

So the current flowing using ohm's law,

V = IR

will be, 0.0139 Amperes.
7 0
3 years ago
Other questions:
  • What is the wavelength of an ekectromagnetic wave that has a frequency of 40,000 hz? the speed of light is 3x10^8 m/s?
    10·1 answer
  • How do you find the elastic constant on a force extension graph?
    12·1 answer
  • What is true about surface waves?
    10·2 answers
  • Approximately 80% of the energy used by the body must be dissipated thermally. The mechanisms available to eliminate this energy
    7·1 answer
  • The process by which lithospheric plates move apart creating spaces that are filled with hot magma is called _____.
    5·2 answers
  • Describe the differences in the atomic structures of a hydrogen atom and a helium atom.
    9·2 answers
  • Consider the differential equation
    5·1 answer
  • A theory that stands the test of time and becomes the basis for a field of
    9·2 answers
  • 5
    8·1 answer
  • Which of the following are examples of some of the environmental costs of technological development? (Choose all that apply)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!