Answer:
D...............................
The vertical weight carried by the builder at the rear end is F = 308.1 N
<h3>Calculations and Parameters</h3>
Given that:
The weight is carried up along the plane in rotational equilibrium condition
The torque equilibrium condition can be used to solve
We can note that the torque due to the force of the rear person about the position of the front person = Torque due to the weight of the block about the position of the front person
This would lead to:
F(W*cosθ) = mgsinθ(L/2) + mgcosθ(W/2)
F(1cos20)= 197/2(3.10sin20 + 2 cos 20)
Fcos20= 289.55
F= 308.1N
Read more about vertical weight here:
brainly.com/question/15244771
#SPJ1
Answer:
y = 4 Sin (2πt)
Explanation:
Amplitude, A = 4
frequency, f = 1
Wave function is given by
y = A sinωt
where, ω is angular frequency
ω = 2 π f = 2 π x 1 = 2π
So, the desired wave function
y = 4 Sin (2πt)
Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain
