1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
3 years ago
7

Explain how gravity and inertia interact to cause the Earth to revolve around the Sun.

Physics
1 answer:
eduard3 years ago
5 0

Answer:

The gravity of the sun and the planets works together with the inertia to create the orbits and keep them consistent. The gravity pulls the sun and the planets together, while keeping them apart. The inertia provides the tendency to maintain speed and keep moving. The planets want to keep moving in a straight line because of the physics of inertia. However, the gravitational pull wants to change the motion to pull the planets into the core of the sun. Together, this creates a rounded orbit as a form of compromise between the two forces.

Explanation:

Hope this answer helps you....

You might be interested in
Rocks A and B are located at the same height on top of a hill. The mass of rock A is twice the mass of rock B. How does the pote
Ronch [10]

Potential energy is defined by formula

U = mgh

here

m = mass

g = acceleration due to gravity

h = height

Now here two different stones are located at same height

while mass of stone A is twice that of stone B

so here we can say potential energy of A is

U_a = (2m)gh

Similarly potential energy of B is

U_b = mgh

now if we take the ratio of two energy

\frac{U_a}{U_b} = 2

so we can say potential energy of stone A is two times the potential energy of B

7 0
3 years ago
(15pts) A hungry 12.0 kg fish is coasting from west to east at 75 cm/s when it suddenly swallows a 1 kg fish swimming towards it
faust18 [17]

Answer:

The speed of the big fish after swallowing the small fish is 0.38 m/s.

Explanation:

Consider west to east direction as positive and the opposite direction as negative.

Given:

Mass of big fish (m₁) = 12.0 kg

Initial velocity of big fish (u₁) = 75 cm/s = 0.75 m/s

Mass of small fish (m₂) = 1 kg

Initial velocity of small fish (u₂) = -4 m/s (Direction is opposite to u₁)

After swallowing the small fish, both the fishes move together with same velocity. Let the velocity be 'v'.

So, as there are no effects of drag or any other forces, the given scenario can be considered as a case of inelastic collision where the objects move together with same velocity after collision.

The momentum is conserved in inelastic collision. Therefore,

Initial momentum of the fishes = Final momentum of the fishes

m_1u_1+m_2u_2=(m_1+m_2)v\\\\v=\dfrac{m_1u_1+m_2u_2}{m_1+m_2}

Now, plug in the given values and solve for 'v'. This gives,

v=\frac{12.0\times 0.75+1\times (-4)}{12.0+1}\\\\v=\frac{9-4}{13}\\\\v=\frac{5}{13}=0.38\ m/s

Therefore, the speed of the big fish after swallowing the small fish is 0.38 m/s

3 0
3 years ago
7. Two people are pushing a 40.0kg table across the floor. Person 1 pushes with a force of 490N
artcher [175]

Answer:

20.4 m/s^{2}

Explanation:

To start doing this problem, first draw a free body diagram of the table. My teacher always tells us to do this, and I find that it is very helpful. I have attached a free body diagram to this answer- take a look at it.

First, let us see if Net force = MA. To do that, we need to determine whether the object is at equilibrium horizontally. For an object to be at equilibrium, it either needs to be moving at a constant velocity or not moving at all. Also, if an object is at equilibrium, there will not be any acceleration. But we know that there IS acceleration horizontally, so it cannot be in equilibrium. If it is not in equilibrium, we can use the formula ∑F= ma.

Let us determine the net force. Since the object is moving horizontally, we can ignore the weight and normal force, because they are vertical forces. The only horizontal forces we need to worry about are the applied force and force of friction.

Applied force = 1055 N (490 + 565)

Friction force= Unknown

To find the friction force, use the kinetic friction formula, Friction = μkN

μk is the coefficient, which the problem includes- it is 0.613.

N is the normal force, which we have to find.

*To find the normal force, we have to determine if the object is at equilibrium VERTICALLY. Since it has no acceleration vertically (it's not moving up/down), it is at equilibrium. Now, when an object is at equilibrium in one direction, it means that all the forces in that direction are equal. What are our vertical forces? Weight (mg) and Normal force (N). So it means that the Normal force is equal to the Weight.

Weight = mg = (40)(9.8) = 392 N

Normal force = 392 N

Now, plug it back into the formula (μkN): (0.613)(392) = 240.296 N

Friction = 240.296 N

Now that we know the friction, we can find the horizontal net force. Just subtract the friction force, 240.296 from the applied force, 1055 N

Horizontal Net Force: 814.704 N

Now that we know the net force, plug in the numbers for the formula

∑F= ma.

814.704 = (40.0)(a)

*Divide on both sides)

a = 20.3676 m/s^2

Round it to 3 significant figures, to get:

20.4 m/s^{2}

7 0
3 years ago
HURRYYYY pls help due today n i be giving brainliest!!!<br><br><br> n no mfkn links plsss
nordsb [41]

Answer:

1 Frequency

2 Wavelength

3 Amplitude

4 Crest

Hope it helps pls mark brainliest

5 0
3 years ago
A 10 kg turkey, He kicks the 0.5 kg ball with a force of 50N for 0.2 seconds and the ball flies straight away horizontally from
Harman [31]

Answer:

a. 20m/s

b.50N

c. Turkey has a larger mass than the ball. Neglible final acceleration and therefore remains stationery.

Explanation:

a. Given the force as 50N, times as 0.2seconds and the weight of the ball as 0.5 kg, it's final velocity can be calculated as:

F\bigtriangleup t=m\bigtriangleup v\\\\50N\times 0.2s=0.5kg\times \bigtriangleup v\\\\\bigtriangleup v=2(50N\times0.2)\\\\=20m/s

Hence, the velocity of the ball after the kick is 20m/s

b.The force felt by the turkey:

#Applying Newton's 3rd Law of motion, opposite and equal reaction:

-The turkey felt a force of 50N but in the opposite direction to the same force felt by the ball.

c. Using the law of momentum conservation:

-Due to ther external forces exerted on the turkey, it remains stationery.

-The turkey has a larger mass than the ball. It will therefore have a negligible acceleration if any and thus remains stationery.

-Momentum is not conserved due to these external forces.

5 0
3 years ago
Other questions:
  • A rock held at a height of 3 meters what a mass of 2kg has what energy
    13·1 answer
  • Between what depths does Earth's temperature increase the slowest?
    14·1 answer
  • Can someone help me on #18 - #26? At least one ☝️ I really need help!!!
    10·1 answer
  • Why earth's atmosphere so important? Why earth's atmosphere so important? Follow 6 answers 6 Report Abuse Are you sure you want
    10·1 answer
  • According to principle of conservation of energy, the total momentum of a system of masses in any direction remains constant unl
    8·1 answer
  • Which process produces rising air when mountains push the air upward?
    7·2 answers
  • The angular velocity of an object is given by the following equation: ω(t)=(5rads3)t2\omega\left(t\right)=\left(5\frac{rad}{s^3}
    6·1 answer
  • WHAT ARE THREE TECHNICAL ADVANCEMENTS
    14·1 answer
  • Plyometrics can help a person maintain cardiorespiratory fitness. Please select the best answer from the choices provided. T F
    11·2 answers
  • Convert .54g to dekagrams. NEED HELP!!!!!!
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!