Answer:
d) Wind
Explanation:
Secondary energy is energy produced by converting energy available in its natural state in the environment. Hence Wind is a primary source not a secondary source
<span>3.36x10^5 Pascals
The ideal gas law is
PV=nRT
where
P = Pressure
V = Volume
n = number of moles of gas particles
R = Ideal gas constant
T = Absolute temperature
Since n and R will remain constant, let's divide both sides of the equation by T, getting
PV=nRT
PV/T=nR
Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation
P1V1/T1 = P2V2/T2
where
P1, V1, T1 = Initial pressure, volume, temperature
P2, V2, T2 = Final pressure, volume, temperature
Now convert the temperatures to absolute temperature by adding 273.15 to both of them.
T1 = 27 + 273.15 = 300.15
T2 = 157 + 273.15 = 430.15
Substitute the known values into the equation
1.5E5*0.75/300.15 = P2*0.48/430.15
And solve for P2
1.5E5*0.75/300.15 = P2*0.48/430.15
430.15 * 1.5E5*0.75/300.15 = P2*0.48
64522500*0.75/300.15 = P2*0.48
48391875/300.15 = P2*0.48
161225.6372 = P2*0.48
161225.6372/0.48 = P2
335886.7441 = P2
Rounding to 3 significant figures gives 3.36x10^5 Pascals.
(technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>
Answer:
0 km/h
Explanation:
Relative speed is the speed of a moving body with respect to another.
When two bodies move in the same direction then the relative speed is calculated as difference of their speeds.
In this case;
The two cars have the same speed. The relative speed will be;
72 km/h -72 km/h = 0 km/h
Answer:
The object will rotate with constant angular acceleration
Explanation:
According to the Newton's Second Law for Whenever there is more than one torque acting on a rigid body that posses fixed axis, the moment of inertia as well as the angular acceleration is equals or proportional to the summation of the torques. It gives details on the relationship between rotational kinematics and torque as well as moment of inertia. This can be represented by the below equation.
∑iτi=Iα.
.Therefore when constant net torque is applied to object that is rotating, the object will rotate with constant angular acceleration
Despite current has a magnitude and a direction, like vectors, it is a scalar because it doesn't obey laws of vector addition. For instance, if we consider a junction of

in a circuit, and two currents entering this junction, we know that the resultant current is just the algebraic sum of the two currents, not the vector sum, so it is not a vector quantity.