Answer:
a. Δx = 2.59 cm
Explanation:
mb = 0.454 kg , mp = 5.9 x 10 ⁻² kg , vp = 8.97 m / s , k = 21.0 N / m
Using momentum conserved
mb * (0) + mp * vp = ( mb + mp ) * vf
vf = ( mp / mp + mb) * vp
¹/₂ * ( mp + mb) * (mp / mp +mb) ² * vp ² = ¹/₂ * k * Δx²
Solve to Δx '
Δx = √ ( mp² * vp² ) / ( k * ( mp + mb )
Δx = √ ( ( 5.9 x 10⁻² kg ) ² * (8.97 m /s) ² / [ 21.0 N / m * ( 5.9 x10 ⁻² kg + 0.454 kg ) ]
Δx = 0.02599 m ⇒ 2.59 cm
Light year is the unit of distance. It is the distance that an object travels in one year with the speed of light.
In short, Your Answer would be "Distance"
Hope this helps!
Answer:
Check attachment for solution
Explanation:
Given that 12V battery
Lean your shoulders back and your waist forwards. Use your arms as a counter weight.
Answer:
3054.4 km/h
Explanation:
Using the conservation of momentum
momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor
initial momentum = 14900 M km/h
let v be the new speed of the motor so that the
new momentum = 4Mv and the new momentum of the module = M ( v + 94 km/h )
total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M
initial momentum = final momentum
14900 M km/h = 5 Mv + 93M
14900 km/h = 5v + 93
14900 - 93 = 5v
v = 2961.4 km/h
the speed of the module = 2961.4 + 93 = 3054.4 km/h