Answer:
water heat evaporated small tiny molecules form coluds .then clouds fall it rains at mountains.the water moves down to rivers,lakes.then again water evaporated rain falls . evaporated vapour it cools form water
The data convincingly show that wave frequency does not affect wave speed. An increase in wave frequency caused a decrease in wavelength while the wave speed remained constant. The last three trials involved the same procedure with a different rope tension.
Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Answer:
the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude
Explanation:
In this hypothetical system the electric force is of type
F =
in this case the force decays to zero much faster,
if we call Fo the force of Coulomb's law
F₀ = 
assuming the constant k is the same
the relationship between the two forces is
F / F₀ = 1 / r
F = F₀ / r
when analyzing this expression the force decays much faster to zero.
In an electric conductor, charges of the same sign may not feel any repulsive force from other charges that are at a medium distance, so there is a probability that some charges are distributed in the volume of the material, this does not happen with coulomb's law
Consequently, the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude
Answer:
Explanation:
Momentum conservation

Kinetic energy conservation

Solve the system