Answer: D
Explanation: The Eukarya differ from the Archea and Bacteria in that their cells are eukaryotic, meaning they contain a membrane enclosed nucleus and other membrane enclosed organelles.
2.2311 moles of gas are there in a 50. 0 l container at 22. 0 °c and 825 torrs.
<h3>What is an ideal gas?</h3>
An Ideal gas is a hypothetical gas whose molecules occupy negligible space and have no interactions, and which consequently obeys the gas laws exactly.
Assuming the gas is ideal, we can solve this problem by using the following equation:
PV = nRT
Where:
P = 825 torr ⇒ 825 / 760 = 1.08 atm
V = 50 L
n = ?
R = 0.082 atm·L·mol⁻¹·K⁻¹
T = 22 °C ⇒ 22 + 273.16 = 295.16 K
We input the data:
1.08 atm x 50 L = n x 0.082 atm·L·mol⁻¹·K⁻¹ x 295.16 K
And solve for n:
24.20312
n = 2.2311 mol
Hence, 2.2311 moles of gas are there in a 50. 0 L container at 22. 0 °c and 825 torrs.
Learn more about ideal gas here:
brainly.com/question/23580857
#SPJ4
Physical change because water is not a gas or change . you can see through it.
P orbitals have 3 sub-shells, each of which can hold one pair of electrons that have opposing spins. This leads to p orbitals holding a maximum of 6 electrons
Answer:
5.645 × 10⁻²³ g
Solution:
Step 1) Calculate Molar Mass of SH₂;
Atomic Mass of Sulfur = 32 g/mol
Atomic Mass of H₂ = 2 g/mol
--------------------
Molecular Mass of SH₂ = 34 g/mol
Step 2: Calculate mass of one molecule of SH₂ as;
As,
Moles = # of Molecules / 6.022 × 10²³
Also, Moles = Mass / M.Mass So,
Mass/M.mass = # of Molecules / 6.022 × 10²³
Solving for Mass,
Mass = # of Molecules × M.mass / 6.022 × 10²³
Putting values,
Mass = (1 Molecule × 34 g.mol⁻¹) ÷ 6.022 × 10²³
Mass = 5.645 × 10⁻²³ g