Step-by-step explanation:
<h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em></h2><h2>
<em><u>x </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em><em><u>/</u></em><em><u>3</u></em></h2>
No; we have
. Substituting these into the DE gives

which reduces to
, true only for
.
Answer:
neither
Step-by-step explanation:
because the square root is not whole number and neither is the cube root of 165. so it is neither
With 4 jacks in the deck of 52, there is a 4/52 = 1/13 probability of drawing 1 jack.
With 13 clubs in the deck, there is a 13/52 = 1/4 probability of drawing 1 card of clubs.
1 of the cards in the deck is both a jack and of suit of clubs, which has a 1/52 probability of being drawn.
P(club OR jack) = P(club) + P(jack) - P(club AND jack) = 13/52 + 4/52 - 1/52 = 16/52 = 4/13
So the answer is B.