Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Answer:
The length of the trail = 22796 ft
Explanation:
From the ΔABC
AC = length of the trail = x
AB = 6100 - 600 = 5500 ft
Angle of inclination
= 15°



x = 22796 ft
Since x = AC = Length of the trail.
Therefore the length of the trail = 22796 ft
Question 25 Answer: Destructive interference occurs.
<span>Question 26Answer: The waves are closer together (as they move) because the object is moving toward you.</span>
<span />
Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.