Answer:
Part a: The rate of the equation for 1st order reaction is given as ![Rate=k[H_2O_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BH_2O_2%5D)
Part b: The integrated Rate Law is given as ![[H_2O_2]=[H_2O_2]_0 e^{-kt}](https://tex.z-dn.net/?f=%5BH_2O_2%5D%3D%5BH_2O_2%5D_0%20e%5E%7B-kt%7D)
Part c: The value of rate constant is 
Part d: Concentration after 4000 s is 0.043 M.
Explanation:
By plotting the relation between the natural log of concentration of
, the graph forms a straight line as indicated in the figure attached. This indicates that the reaction is of 1st order.
Part a
Rate Law
The rate of the equation for 1st order reaction is given as
![Rate=k[H_2O_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BH_2O_2%5D)
Part b
Integrated Rate Law
The integrated Rate Law is given as
![[H_2O_2]=[H_2O_2]_0 e^{-kt}](https://tex.z-dn.net/?f=%5BH_2O_2%5D%3D%5BH_2O_2%5D_0%20e%5E%7B-kt%7D)
Part c
Value of the Rate Constant
Value of the rate constant is given by using the relation between 1st two observations i.e.
t1=0, M1=1.00
t2=120 s , M2=0.91
So k is calculated as

The value of rate constant is 
Part d
Concentration after 4000 s is given as

Concentration after 4000 s is 0.043 M.
Answer:
Examples of storage polysaccharides - <u>starch and glycogen</u> and structural polysaccharides - <u>cellulose and chitin</u>
Explanation:
Polysaccharides are the complex carbohydrate polymers, composed of monosaccharide units that are joined together by glycosidic bond.
In other words, polysaccharides are the carbohydrate molecules that give monosaccharides or oligosaccharides on hydrolysis.
The examples of storage polysaccharides are starch and glycogen. The examples of structural polysaccharides are cellulose and chitin.
Answer:
C. Potassium-19
.
Explanation:
Hello!
In this case, since isotopes are known be atoms of the same element with equal atomic number but different mass number, we can consider the case of carbon which has two natural occurring ones, carbon-12 and carbon-13 whereas carbon-12 has the greatest abundance. However, isotope notation may take two forms:
1. Symbol of the element followed by a dash indicating the mass number of the isotope, for instance: C-12, K-39, and so on.
2. Name of the element followed by a dash indicating the mass number of the isotope, for instance: Carbon-12, Potassium-39, and so on.
In such a way, the improper isotope notation is C. Potassium-19
, considering that A should be K-39 because atomic symbol of potassium is K, not k.
Best regards!
The correct answer for the question that is being presented above is this one: "C. solubility level." The <span>term defines the amount that a solute can dissolve into a solution is called the solubility level. The higher the solubility level, the faster it dissolves.</span>
The amount of HCl required for one experiment - 13.5 µl
the volume in terms of L - 13.5 x 10⁻⁶ L
the volume of HCl available - 0.250 L
since one experiment uses up - 13.5 x 10⁻⁶ L
then number of experiments - 0.250 L / 13.5 x 10⁻⁶ L = 1.8 x 10⁴ times
the experiment can be carried out 18000 times