Answer:
speed of the bullet before it hit the block is 200 m/s
Explanation:
given data
mass of block m1 = 1.2 kg
mass of bullet m2 = 50 gram = 0.05 kg
combine speed V= 8.0 m/s
to find out
speed of the bullet before it hit the block
solution
we will apply here conservation of momentum that is
m1 × v1 + m2 × v2 = M × V .............1
here m1 is mass of block and m2 is mass of bullet and v1 is initial speed of block i.e 0 and v2 is initial speed of bullet and M is combine mass of block and bullet and V is combine speed of block and bullet
put all value in equation 1
m1 × v1 + m2 × v2 = M × V
1.2 × 0 + 0.05 × v2 = ( 1.2 + 0.05 ) × 8
solve it we get
v2 = 200 m/s
so speed of the bullet before it hit the block is 200 m/s
The correct answer is
<span>c) very small and very large
Let's see this with a few examples:
1) if we have a very small number, such as
</span>

<span>we see that we can write it easily by using the scientific notation:
</span>

<span>2) Similarly, if we have a very large number:
</span>

<span>we see that we can write it easily by using again the scientific notation:
</span>

<span>
</span>
Answer:
ΔU = 2 mg h
Explanation:
In a spring mass system the potential energy is U = m g h
where h is measured from the equilibrium point of the spring
the potential energy at the highest point is
U₁ = m g h
the potential energy at the lowest point is
U₂ = m g (-h)
instead in this energy it is
ΔU = 2 mg h
In this two points the kinetic energy is zero, but there is elastic potential energy that has the same value in the two points, so its change is zero
Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.