Answer:
The amount of energy carried by a wave is related to the amplitude of the wave
Explanation:
A high energy wave is characterized by a high amplitude; a low energy wave is characterized by a low amplitude. The energy imparted to a pulse will only affect the amplitude of that pulse.
Hope this helped!!!
The best represent the size of visible light will be C. Protozoa
The electromagnetic spectrum, gives the overall distribution of electromagnetic radiation by the frequency or wavelength. All EM waves travel at the speed of light in a vacuum, but over a wide range of frequencies, wavelengths, and photon energies.
Visible light wavelengths cover the range of approximately 0.4 to 0.7 μm. electromagnetic spectrum that the human eye can see is the Visible light. Visible light is a form of electromagnetic (EM) radiation, along with radio waves, infrared, ultraviolet, X-rays, and microwaves. the wavelengths that are visible to most human eyes is generally known as Visible light
the best represent the size of visible light is Protozoa, According to the diagram of the electromagnetic spectrum shown,
Learn more about electromagnetic spectrum here brainly.com/question/25847009
#SPJ9
Answer:
s = 1.7 m
Explanation:
from the question we are given the following:
Mass of package (m) = 5 kg
mass of the asteriod (M) = 7.6 x 10^{20} kg
radius = 8 x 10^5 m
velocity of package (v) = 170 m/s
spring constant (k) = 2.8 N/m
compression (s) = ?
Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore
• Ei = Ef
• Ei = energy in the spring + gravitational potential energy of the system
• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}
• Ef = kinetic energy of the object
• Ef = \frac{1}{2}mv^{2}
• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}
• s =
s =
s = 1.7 m
Answer:
The voltage drop across the bulb is 115 V
Explanation:
The voltage drop equation is given by:

Where:
ΔW is the total work done (4.6kJ)
Δq is the total charge
We need to use the definition of electric current to find Δq

Where:
I is the current (2 A)
Δt is the time (20 s)


Then, we can put this value of charge in the voltage equation.

Therefore, the voltage drop across the bulb is 115 V.
I hope it helps you!
Force is a vector quantity
so pulling from opposite side will be negative
so
750+(-500)= 250N
C is the right answer
becauseause the man on the right applies greater force.