Answer:
Explanation:
I suppose it has to do with the way the diagram is drawn. The heat does not reflect which makes both A and B incorrect.
C would have nothing to do with either reflection or refraction.
That only leaves D which is the answer.
Answer:
B
Explanation:
Newton’s Second Law of Motion
Newton’s Second Law of Motion states that ‘when an object is acted on by an outside force, the mass of the object equals the strength of the force times the resulting acceleration’.
This can be demonstrated dropping a rock or and tissue at the same time from a ladder. They fall at an equal rate—their acceleration is constant due to the force of gravity acting on them.
The rock's impact will be a much greater force when it hits the ground, because of its greater mass. If you drop the two objects into a dish of water, you can see how different the force of impact for each object was, based on the splash made in the water by each one.
It a blue tectonic movement
Answer:
Mercury
Explanation:
The force of gravity is equal to the mass times the centripetal acceleration:
Fg = m v² / r
Also, the force of gravity is defined by Newton's law of universal gravitation, which states the Fg = mMG / r², where m and M are the masses of the objects, G is the universal constant of gravitation, and r is the distance between the objects.
mMG / r² = m v²/ r
MG / r = v²
This means the square of the orbital velocity is equal to the mass of the sun times the universal constant of gravity divided by the orbital radius. So whichever planet has the smallest orbital radius will have the highest orbital velocity. Of the four options, that would be Mercury.