Answer:
2.25×10¯³ mm.
Explanation:
From the question given above, we obtained the following information:
Diameter in micrometer = 2.25 μm
Diameter in millimetre (mm) =?
Next we shall convert 2.25 μm to metre (m). This can be obtained as follow:
1 μm = 1×10¯⁶ m
Therefore,
2.25 μm = 2.25 μm / 1 μm × 1×10¯⁶ m
2.25 μm = 2.25×10¯⁶ m
Finally, we shall convert 2.25×10¯⁶ m to millimetre (mm) as follow:
1 m = 1000 mm
Therefore,
2.25×10¯⁶ m = 2.25×10¯⁶ m /1 m × 1000 mm
2.25×10¯⁶ m = 2.25×10¯³ mm
Therefore, 2.25 μm is equivalent to 2.25×10¯³ mm.
Answer:
Bohr's model of the hydrogen atom is based on three postulates:
1) An electron moves around the nucleus in a circular orbit,
2) An electron's angular momentum in the orbit is quantised,
3) The change in an electron's energy as it makes a quantum jump from one orbit to another is always accompanied by the emission or absorption of a photon. Bohr's model is semi-classical because it combines the classical concept of electron orbit (postulate 1) with the new concept of quantisation ( postulates 2 and ).
Explanation:
Because opposites attract, the negative charge at the bottom of the storm cloud wants to link up with the ground’s positive charge. Once the negative charge at the bottom of the cloud gets large enough, a flow of negative charge called a stepped leader rushes toward the Earth. The positive charges at the ground are attracted to the stepped leader, so positive charge flows upward from the ground. When the stepped leader and the positive charge meet, a strong electric current carries positive charge up into the cloud. This electric current is known as the return stroke. We see it as the bright flash of a lightning bolt.
Thunder and lightning occur at roughly the same time although you see the flash of lightning before you hear the thunder. This is because light travels much faster than sound