<u>Answer:</u> The correct option is d) 460 kJ
<u>Explanation:</u>
We are given:
Content of fat in energy drink = 2.0 g
Content of protein in energy drink = 6.0 g
Content of carbohydrate in energy drink = 16.3 g
Also,
The fuel value of fat = 38 kJ/g
The fuel value of protein = 17 kJ/g
The fuel value of carbohydrate = 17 kJ/g
So, the fuel value of the energy drink will be:
Total fuel value = 
Total fuel value = ![[76+102+277]=460kJ](https://tex.z-dn.net/?f=%5B76%2B102%2B277%5D%3D460kJ)
Hence, the correct option is d) 460 kJ
<span>1. Translate, predict the products, and balance the equation above.
Li + Cu(NO3)2 = Li(NO3)2 + Cu
2. How many particles of lithium are needed to produce 125 g of copper?
125 g Cu ( 1 mol / 63.55 g ) (1 mol Li / 1 mol Cu ) ( 6.022 x 10^23 particles / 1 mol ) = 1.18x10^24 Li particles
3. How many grams of lithium nitrate are produced from 4.83E24 particles of copper (II) nitrate?
</span>4.83E24 particles of copper (II) nitrate ( 1 mol / 6.022x10^23 particles ) (1 mol Li(NO3)2 / 1 mol Cu(NO3)2 ) ( 130.95 g / 1 mol ) = 1043.77 grams Li(NO3)2
<span>The Baltic Sea is positioned
in Northern Europe and bordered by Sweden (a part of the Scandinavian
Peninsula), Finland, Russia, Estonia, Latvia, Lithuania, Poland,
northeastern Germany, and eastern Denmark and its numerous islands.
Hope This Help Human <3
</span>
Answer:
7. A) I, II
; 8. D) 2.34e9 kJ
Step-by-step explanation:
7. Combustion of ethanol
I. The negative sign for ΔH shows that the reaction is exothermic.
II. The enthalpy change would be different if gaseous water were produced.
That's because it takes energy to convert liquid water to gaseous water, and this energy is included in the value of ΔH.
III. The reaction is a redox reaction, because
- Oxygen is reacting with a compound
- The oxidation number of C increases
- The oxidation number of O decreases.
IV. The products of the reaction occupy a smaller volume than the reactants, because 3 mol of gaseous reactant are forming 2 mol of gaseous product.
Therefore, only I and II are correct.
7. Hindenburg
Data:
V = 2.00 × 10⁸ L
p = 1.00 atm
T = 25.1 °C
ΔH = -286 kJ·mol⁻¹
Calculations:
(a) Convert temperature to kelvins
T = (25.1 + 273.15) K = 298.25 K
(b) Moles of hydrogen
Use the <em>Ideal Gas Law</em>:
pV = nRT
n = (pV)/(RT)
n = (1.00 × 2.00 × 10⁸)/(0.082 06 × 298.25) = 8.172 × 10⁶ mol
(c) Heat evolved
q = nΔH = 8.172 × 10⁶ × (-286) = -2.34 × 10⁹ kJ
The hydrogen in the Hindenburg released 2.34e9 kJ
.