the reagents necessary to convert alcohol to ketone
which involves oxidation of alcohols.
<h3>
What is oxidation of alcohols?</h3>
- Alcohol oxidation is a significant organic chemistry process. Secondary alcohols can be oxidized to produce ketones, while primary alcohols can be oxidized to produce aldehydes and carboxylic acids.
- In contrast, tertiary alcohols cannot be oxidized without the C-C bonds in the molecule being broken.
- In order to cause primary alcohols to oxidize into aldehydes
(dichromate)
/pyridine (Collins reagent)- Chromium pyridinium compound (PCC)
- Dichromate of pyridinium (PDC, Cornforth reagent)
- Periodinane by Dess-Martin
- Oxalyl chloride with dimethylsulfoxide (DMSO) for Swern
- oxidation of secondary alcohols to ketones
(dichromate)
/pyridine (Collins reagent)- Chromium pyridinium compound (PCC)
- Dichromate of pyridinium (PDC, Cornforth reagent)
- Periodinane by Dess-Martin
- Oxalyl chloride and dimethyl sulfoxide (DMSO) (Swern oxidation)
/acetone (Jones oxidation)- Acetone with aluminum isopropoxide (Oppenauer oxidation)
To learn more about oxidation of alcohols with the given link
brainly.com/question/7207863
#SPJ4
<u>Question:</u>
Identify the reagents necessary to achieve each of the following transformations




Answer:
<h3>
<u>A). react with acid that is added and make a base.</u></h3>
explanation:
<em>Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added.</em>
Activation energy is a thermodynamic barrier that must be overcome before products are formed in a reaction. It is the minimum amount of energy needed for a reaction to occur. The energy can be in the form of kinetic or potential energy. This concept was introduced by Svante Arrhenius, which brought about the Arrhenius equation which is a formula used to determine rate of reactions.
Answer:
the answer should be henry's law
Answer:
d = 0.793 g/L
Explanation:
Given data:
Density of fluorine gas = ?
Pressure of gas = 0.554 atm
Temperature of gas = 50 °C (50+273.15K = 323.15 K)
Solution:
Formula:
PM = dRT
M = molar mass of gas
P = pressure
R = general gas constant
T = temperature
d = PM/RT
d = 0.554 atm × 37.99 g/mol / 0.0821 atm.L /mol.K × 323.15 K
d = 21.05 atm.g/mol/26.53 atm.L /mol
d = 0.793 g/L