Answer:
366.90149 m/s
923.821735 J
324.734 J
Initial Kinetic energy > Final kinetic energy
Explanation:
= Mass of block = 0.072 kg
= Mass of bullet = 4.67 g
= Initial Velocity of block = 0
= Initial Velocity of bullet = 629 m/s
= Final Velocity of block = 17 m/s
= Final Velocity of bullet
In this system the linear momentum is conserved

Final Velocity of bullet is 366.90149 m/s
The initial kinetic energy

The final kinetic energy

Initial Kinetic energy > Final kinetic energy
Answer:
__________________________________________________
No; the sample could not be aluminum;
since the density of aluminum, " 2.7 g/cm³ " , is NOT close enough to the density of the sample, " 3.04 g/cm³ " .
________________________________________________
Explanation:
________________________________________________
Density is expressed as "mass per unit volume" ;
in which:
"mass, "m", is expressed in units of "g" (grams); and:
"Volume, "V", is expressed in units of "cm³ " (such as in this problem); or in units of "mL" ;
__________________________________________________
{Note the exact conversion: " 1 cm³ = 1 mL " .}.
__________________________________________________
The formula for density: D = m/V ;
Given: The density of aluminum is: 2.7 g/cm³.
Given: A sample has a mass of 52.0 g ; and Volume of 17.1 cm³ ; could it be aluminum?
_________________________________________________________
Let us divide the mass of the sample by the volume of the sample;
by using the formula:
___________________________________________
D = m / V ;
and see if the value is at, or very close to "2.7 g/cm³ ".
If it is, then it could be aluminum.
____________________________________________________
The density for the sample:
D = (52.0 / 17.1) g/cm³ = 3.0409356725146199 g/cm³ ;
→round to "3 significant figures" ;
= 3.04 g/cm³ .
_______________________________________________
No; the sample could not be aluminum; since the density of aluminum,
"2.7 g/cm³ " is NOT close enough to the density of the sample,
"3.04 g/cm³ " .
____________________________________________________
What type of change occurs when water changes from solid to a liquid a phase change a physical change and irreversible change both A and the
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...
It can never be in a total free fall due to air resistance and terminal velocity due to mass