Answer:
magnesium metal
Explanation:
According to the redox reaction equation, six electrons were transferred hence n=6 and F= Faraday's constant 96500C. ∆G° is given hence E°cell can easily be calculated as follows:
From ∆G°= -nFE°cell
E°cell= -∆G°/nF= -(-411×10^3/96500×6)
E°cell= 0.7098V
But for Al3+(aq)/Al(s) half cell, E°= -1.66V from standard table of reduction potentials.
E°cell= E°cathode- E°anode but Al3+(aq)/Al(s) half cell is the cathode
Hence
E°anode=E°cathode - E°cell
E°anode= -1.66-0.7098= -2.37V
This is the reduction potential of Mg hence the anode material was magnesium metal
Explanation:
The given data is as follows.
= 100 mm Hg or
= 0.13157 atm
=
= (1080 + 273) K = 1357 K
=
= (1220 + 273) K = 1493 K
= 600 mm Hg or
= 0.7895 atm
R = 8.314 J/K mol
According to Clasius-Clapeyron equation,

![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
0.77815 = 
=
J/mol
= 
= 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.
<u>Answer:</u> The value of <em>i</em> is 1.4 and 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
<u>Explanation:</u>
The equation used to calculate the Vant' Hoff factor in dissociation follows:

where,
= degree of dissociation = 40% = 0.40
i = Vant' Hoff factor
n = number of ions dissociated = 2
Putting values in above equation, we get:

The equation used to calculate the degee of dissociation follows:

Total number of particles taken = 100
Degree of dissociation = 40% = 0.40
Putting values in above equation, we get:

This means that 40 particles are dissociated and 60 particles remain undissociated in the solution.
Hence, 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
Answer:
Na2CO3 <==> 2Na^+ + CO3^2-
Explanation: