Mg3(PO4)2 - the molar mass would be 262g/mol, which is 100%
Atomic mass of Mg is 24, since we have 3Mg we multiply by 3 and get a mass of 72
262 : 100% = 72 : x%
x = 72*100 / 262
x = 27.5%
And do that for every element — get the molar mass of P and multiply by 2, use a ratio, and get the molar mass of O and multiply by 8 and use ratios :)
Answer: Option (5) is the correct answer.
Explanation:
It is known that the ground state electronic configuration of silicon is
.
And, we know that when an atom tends to gain an electron then it acquires a negative charge and when an atom tends to lose an electron then it acquires a positive charge.
As
has a +4 charge which means that it has lost 4 electrons. Hence, the electronic configuration of
is
.
According to the Aufbau principle, in the ground state of an atom or ion the electrons fill atomic orbitals of the lowest energy levels first, before filling the higher energy levels.
As 2p orbital is filled after the filling of 2s orbital.
Therefore, we can conclude that 2p orbital will be occupied by the electrons of highest energy for the
ground-state ion.
The answer is False. the amplitude shows how high or low something is
Answer:
4 1/2
Explanation:
Use a ratio to find your answer
4 6
----- = -------
3 x
Cross multiply to solve for x.
4x = 18
x = 18/4
x = 4 2/4 which is the same as 4 1/2
Answer:

Explanation:
We are asked to find the mass of a sample of metal. We are given temperatures, specific heat, and joules of heat, so we will use the following formula.

The heat added is 4500.0 Joules. The mass of the sample is unknown. The specific heat is 0.4494 Joules per gram degree Celsius. The difference in temperature is found by subtracting the initial temperature from the final temperature.
- ΔT= final temperature - initial temperature
The sample was heated <em>from </em> 58.8 degrees Celsius to 88.9 degrees Celsius.
- ΔT= 88.9 °C - 58.8 °C = 30.1 °C
Now we know three variables:
- Q= 4500.0 J
- c= 0.4494 J/g°C
- ΔT = 30.1 °C
Substitute these values into the formula.

Multiply on the right side of the equation. The units of degrees Celsius cancel.

We are solving for the mass, so we must isolate the variable m. It is being multiplied by 13.52694 Joules per gram. The inverse operation of multiplication is division, so we divide both sides by 13.52694 J/g

The units of Joules cancel.


The original measurements have 5,4, and 3 significant figures. Our answer must have the least number or 3. For the number we found, that is the ones place. The 6 in the tenth place tells us to round the 2 up to a 3.

The mass of the sample of metal is approximately <u>333 grams.</u>