Look to be honest, I don't know how to work out the problem, but my teacher, and my says it takes 8 minutes for the Sun's light to reach
hope my answer works :)
<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>
Answer:
1.07 g
Explanation:
Half-life of Pu-234 = 4.98 hours
Initially present = 45 g
mass remains after 27 hours = ?
Solution:
Formula
mass remains = 1/ 2ⁿ (original mass) ……… (1)
Where “n” is the number of half lives
To find "n" for 27 hours
n = time passed / half-life . . . . . . . .(2)
put values in equation 2
n = 27 hr / 4.98 hr
n = 5.4
Mass after 27 hr
Put values in equation 1
mass remains = 1/ 2ⁿ (original mass)
mass remains = 1/ 2^5.4 (45 g)
mass remains = 1/ 42.2 (45 g)
mass remains = 0.0237 x 45 g
mass remains = 1.07 g
Given what we know, the tool in question that will help the student collect data regarding the transfer of kinetic energy between water and ice would be a thermometer.
<h3>How does the thermometer measure kinetic energy?</h3>
It does not do so directly. However, kinetic energy in water molecules is reflected in the temperature of the water. When water molecules increase their kinetic energy and move more, they become hotter. Increased or decreased heat is an indirect way to measure the transfer of kinetic energy in water.
Therefore, given that the temperature of the water is a reflection of the transfer of kinetic energy happening, we can confirm that the tool that will help the student collect the data needed is a thermometer.
To learn more about kinetic energy visit:
brainly.com/question/999862?referrer=searchResults
Missing question: 0,535 gram of KIO₃ dissolved in 250 mL of de-ionized water to <span>make primary standard solution.
m(</span>KIO₃) = 0,535 g.
V(KIO₃) = 250 mL ÷ 1000 mL/L = 0,25 L.
n(KIO₃) = m(KIO₃) ÷ M(KIO₃).
n(KIO₃) = 0,535 g ÷ 214 g/mol.
n(KIO₃) = 0,0025 mol.
c(KIO₃) = n(KIO₃) ÷ V(KIO₃).
c(KIO₃) = 0,0025 mol ÷ 0,25 L.
c(KIO₃) = 0,01 mol/L = 0,01 M.