Answer:
1.22 L of carbon dioxide gas
Explanation:
The reaction that takes place is:
- CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O
First we <u>determine which reactant is limiting</u>:
- Calcium carbonate ⇒ 10.0 g CaCO₃ ÷ 100 g/mol = 0.10 mol CaCO₃
- Hydrochloric acid ⇒ 0.100 L * 0.50 M = 0.05 mol HCl
So HCl is the limiting reactant.
Now we calculate the moles of CO₂ produced:
- 0.05 mol HCl *
= 0.05 mol CO₂
Finally we use PV=nRT to <u>calculate the volume</u>:
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
1 atm * V = 0.05 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Answer:
in both nucleophil attach the c and leaving group leave but in acyl nu. subsituation c of carbonyl because of double bond with o have bigger positive charge and is better electrophil so do it faster,also alkyl nu. subsituation can have rearangment if going from sn1 and in sn2 sterichemistry of molecule change , acyl nu. subsituation most of time is better
Answer:
B
Explanation:
For solving this we need a heat balance

By changing the corresponding relations, we have

By cancelling similar factor, we obtain

Which means that the change of temperature in A is twice the change of B
The correct answer is Cl.
Chlorine is a substance that's employed in industry and is present in a number of household goods. There are times when chlorine takes the form of toxic gas. Chlorine gas can be converted into a liquid by applying pressure and cooling so that it can be transported and stored. The term "oxidation number" refers to the number of electrons that an element's atom either loses or gains during the production of a compound. The charge that an atom seems to have when forming ionic connections with other heteroatoms is used to define an atom's oxidation number. Even if it develops a covalent bond, an atom with a higher electronegativity is given a negative oxidation state.
Learn more about oxidation numbers here:-
brainly.com/question/10079361
#SPJ4