Nitrogen will form an ionic bond
The mass of ammonium chloride that must be added is : ( A ) 4.7 g
<u>Given data :</u>
Volume of water ( V ) = 250 mL = 0.25 L
pH of solution = 4.85
Kb = 1.8 * 10⁻⁵
Kw = 10⁻¹⁴
Given that the dissolution of NH₄Cl gives NH₄⁺⁺ and Cl⁻ ions the equation is written as :
NH₄CI + H₂O ⇄ NH₃ + H₃O⁺
where conc of H₃O⁺
[ H₃O⁺ ] =
and Ka = Kw / Kb
∴ Ka = 5.56 * 10⁻¹⁰
Next step : Determine the concentration of H₃O⁺ in the solution
pH = - log [ H₃O⁺ ] = 4.85
∴ [ H₃O⁺ ] in the solution = 1.14125 * 10⁻⁵
Next step : Determine the concentration of NH₄CI in the solution
C = [ H₃O⁺ ]² / Ka
= ( 1.14125 * 10⁻⁵ )² / 5.56 * 10⁻¹⁰
= 0.359 mol / L
Determine the number of moles of NH₄CI in the solution
n = C . V
= 0.359 mol / L * 0.25 L = 0.08979 mole
Final step : determine the mass of ammonium chloride that must be added to 250 mL
mass = n * molar mass
= 0.08979 * 53.5 g/mol
= 4.80 g ≈ 4.7 grams
Therefore we can conclude that the mass of ammonium chloride that must be added is 4.7 g
Learn more about ammonium chloride : brainly.com/question/13050932
Answer:
Hydrogen Bond
Explanation:
Hydrogen bond interactions are formed between the hydrogen atom bonded to most electronegative atoms (i.e. F, O and N) of one molecule and most electronegative atom (i.e. F, O and N) of another molecule.
In this interaction the hydrogen atom has partial positive charge and electronegative atom has partial negative charge.
Based on nuclear stability, the symbol for the most likely product nuclide obtained when nitrogen-13 undergoes decay is coming from the following equation:
₇N¹³ → Positron₊₁⁰ + ₆C¹³
So the correct answer will be ₆C¹³