Answer:
a) T² = (
) r³
b) veloicity the dependency is the inverse of the root of the distance
kinetic energy depends on the inverse of the distance
potential energy dependency is the inverse of distance
angular momentum depends directly on the root of the distance
Explanation:
1) for this exercise we will use Newton's second law
F = ma
in this case the acceleration is centripetal
a = v² / r
the linear and angular variable are related
v = w r
we substitute
a = w² r
force is the universal force of attraction
F = 
we substitute

w² = 
angular velocity is related to frequency and period
w = 2π f = 2π / T
we substitute

the final equation is
T² = () r³
b) the speed of the orbit can be found
v = w r
v = 
v = 
in this case the dependency is the inverse of the root of the distance
Kinetic energy
K = ½ M v²
K = ½ M GM / r
K = ½ GM² 1 / r
the kinetic energy depends on the inverse of the distance
Potential energy
U =
U = -G mM / r
dependency is the inverse of distance
Angular momentum
L = r x p
for a circular orbit
L = r p = r Mv
L =
L =
The angular momentum depends directly on the root of the distance
It is more likely to be similar to his/her parents because the get half of their genetic code from their mom and half from their dad.
Answer:
V(t1-t0)
Explanation:
Moving 'uniformly' means constant velocity (speed). the formula for constant speed motion is
=( change in position/ change in time)
where,
V is speed
given in the statement :
change in time = t = t1-t0
let the constant speed be ' V '
disance = X = X1-X0
applying the above mentioned formula: V = 
V = X/t
X = Vt
the distance X1-X0 = Vt =V(t1-t0)
The kinetic energy is given by:

We know the mass and the maximum speed, plugging their values in the expression above we have:

Therefore, the answer is d.