Answer:
Explanation:
potential energy of compressed spring
= 1/2 k d²
= 1/2 x 730 d²
= 365 d²
This energy will be given to block of mass of 1.2 kg in the form of kinetic energy .
Kinetic energy after crossing the rough patch
= 1/2 x 1.2 x 2.3²
= 3.174 J
Loss of energy
= 365 d² - 3.174
This loss is due to negative work done by frictional force
work done by friction = friction force x width of patch
= μmg d , μ = coefficient of friction , m is mass of block , d is width of patch
= .44 x 1.2 x 9.8 x .05
= .2587 J
365 d² - 3.174 = .2587
365 d² = 3.4327
d² = 3.4327 / 365
= .0094
d = .097 m
= 9.7 cm
If friction increases , loss of energy increases . so to achieve same kinetic energy , d will have to be increased so that initial energy increases so compensate increased loss .
Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum







Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision



Final kinetic energy after collision



Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
The work done to stretch the spring will be 112 J.
<h3>What is spring force?</h3>
The force required to extend or compress a spring by some distance scales linearly with respect to that distance is known as the spring force. Its formula is
F = kx
The given data in the problem is;
F is the spring force =?
K is the spring constant= 8.5 N/m
x is the length by which spring got stretched = 1.2m
The work is done to stretch the spring is;

To learn more about the spring force refer to the link;
brainly.com/question/4291098
#SPJ1
Answer:
See Explanation
Explanation:
a) We know that;
v = λf
Where;
λ = wavelength of the wave
f = frequency of the wave
v = velocity of the wave
So;
T = 2 * 2.10 s = 4.2 s
Hence f = 1/4.2 s
f = 0.24 Hz
The wavelength = 6.5 m
Hence;
v = 6.5 m * 0.24 Hz
v = 1.56 m/s
b)The amplitude of the wave is;
A = 0.600 m/2 = 0.300 m
c) Since the wave speed does not depend on the amplitude of the wave then the answer in (a) above remains the same
Where d = 0.30 m
A = 0.30 m/2 = 0.15 m