Answer:
60 kg m/s
Explanation:
Let
be the acceleration of the object.
As the acceleration of the object is constant, so

Given that applied force, F=6.00 N,
From Newton's second law, we have
,
[from equation (i)]


[given that time, t=10 s and F=6 N]

Here mv is the final momentum of the object and mu is the initial momentum of the object.
So, the change in the momentum of the object is mv-mu.
Hence, the change in the momentum of the object is 60 kg m/s.
Answer:
Atoms are made up of even smaller particles called <u>protons,</u><u> </u><u>electrons </u><u>&</u><u> </u><u>neutrons</u><u> </u><u>(</u><u>sub</u><u>-</u><u>atomic </u><u>particles)</u>
The answer to your question is the Origin
According to newton's first law, massive objects have larger inertia than
small objects, which means it takes more force to move bigger things
than smaller
ones.
Answer:
TRUE
Explanation:
The answer is true.
Balance forces acting on a body will not change the motion of the body because the body experiences no net resultant force in one direction. When any body experiences equal forces with opposite directions, the net force or the resultant force experience by the body is zero.
In case of an unbalanced forces, there is a net force acting in one direction and so it causes the body to change in its state of motion in the direction of the net force.