Hope this helps, if you need clarification i got you
The behavior of an ideal gas at constant temperature obeys Boyle's Law of
p*V = constant
where
p = pressure
V = volume.
Given:
State 1:
p₁ = 10⁵ N/m² (Pa)
V₁ = 2 m³
State 2:
V₂ = 1 m³
Therefore the pressure at state 2 is given by
p₂V₂ = p₁V₁
or
p₂ = (V₁/V₂) p₁
= 2 x 10⁵ Pa
Answer: 2 x 10⁵ N/m² or 2 atm.
Answer:
15 m per second
900m per minute
54,000 per hour
Explanation:
60 divided by 4 to get per second then times 60 for per minutes
then times 60 to get per hour
Thank you for posting your question here at brainly. Below is the solution:
Ke up top = 1/2*.25 *225
<span>gain of Pot energy = .25*9.81*1.2 </span>
<span>work input = (1/4)(2 pi *.6)*30 </span>
<span>so </span>
<span>sum of those 3 energies = </span>
<span>(1/2)(.25)v^2</span>
Answer:
The magnitude of the force that the 6.3 kg block exerts on the 4.3 kg block is approximately 41.9 N
Explanation:
Forces on block 4.3 kg are:
63N to the right and R21 (contact force from the 6.3 kg block) to the left
Net force on 4.3 kg block is: 63 N - R21
Forces on the 6.3 kg block are:
R12 to the right (contact force from the 4.3 kg block) and 11 N to the left.
So net force on the 6.3 kg block is: R12 - 11 N
According to the action-reaction principle the contact forces R21 and R12 must be equal in magnitude (let's call them simply "R").
Then, since the blocks are moving with the SAME acceleration, we equal their accelerations:
a1 = (63 N - R)/4.3 = (R - 11 N)/6.3 = a2
solve for R by cross multiplication
6.3 (63 - R) = 4.3 (R - 11)
396.9 - 6.3 R = 4.3 R - 47.3
369.9 + 47.3 = 10.6 R
444.2 = 10.6 R
R = 444.2 / 10.6
R = 41.90 N