Answer:
The answer is below
Explanation:
The maximum height (h) of a projectile with an initial velocity of u, acceleration due to gravity g and at an angle θ with the horizontal is given as:

Given that the two projectile has the same height.


When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz (1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer. HOPE THIS HELPED
Answer:
Acceleration is percieved, not constant velocity.
Explanation:
You are most aware when the vehicle is accelerating. At constant velocity you would not be aware of the motion. Only if the system is accelerated the dynamics must be solved considering a pseudo-force (of inertial origin) acting.
It's because of this that:
(A) False. The acceleration can be detected from the inside of a closed car.
(B) False. You would be aware of the motion, but not because humans can sense speed but acceleration.
(C) False. Constant velocity cannot be felt in a closed car.
(D) False. Again, you can't feel constant speed.
1) The object slows down due to kinetic friction.
2) The coefficient of kinetic friction is higher on a carpet than on the bare floor, therefore the object would slow down quicker on the carpet