There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths.
To play a variety of roles in biochemical interactions, we require all of these diverse sorts of linkages. The tensile strength of these linkages varies. In chemistry, we consider the range of strengths between ionic and covalent bonds to be overlapping. This indicates that in water, ionic bonds usually dissociate. As a result, we shall consider these bonds from strongest to weakest in the following order:
Covalent is followed by ionic, hydrogen, and van der Waals.
To know more about 4 different types of bonds, visit;
brainly.com/question/17401243
#SPJ4
Answer: 3.59
Explanation:
(2.06)(1.743)(1.00)
2.06 × 1.743 × 1.00
= 3.59058
Two of the multiplied digits are represented in 3 significant figures. Therefore, for correct representation, the result of the product should be written to three significant figures.
3.59058 to 3 significant figures:
First three digits = 3.59
Fourth digit '0' is less than 5, and thus rounded to 0 with other succeeding digits
Therefore, (2.06)(1.743)(1.00) to 3 significant figures equals :
3.59
Answer:
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Keq= [Mg3P2]/[Mg]^3 [P]^2
Explanation:
The equation for the formation of magnesium phosphide from its elements is;
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Hence we can see that three moles of magnesium atoms combines with two moles of phosphorus atoms to yield one mole of magnesium phosphide. The equation written above is the balanced chemical reaction equation for the formation of the magnesium phosphide.
The equilibrium expression for the reaction K(eq) will be given by;
Keq= [Mg3P2]/[Mg]^3 [P]^2
Answer:
Explanation:
Alka Seltzer tablet contains 325 mg of aspirin (acetylsalicylic acid), 1000 mg of citric acid, and 1916 mg of sodium bicarbonate. The acids originally contained in a tablet give only 17.4 mmol of H+, which is not enough to neutralize all of the sodium bicar- bonate (22.8 mmol).