Answer:
The one left in the hot sunlight.
Explanation:
The solubility of gases decreases when temperature increases. The gas in the soda pop (CO2) left in the sun will not stay dissolved as much as the on left in the refrigerator.
Einstein's famous equation, E = mc^2 relates the mass (m) of an object to energy (E). The speed of light (c), is the constant of proportionality. Einstein formulated the equation within his theory of special relativity. Indeed, a physical interpretation of this equation is that any given mass is equivalent to the energy given by the equation, if it were suddenly converted to energy. Therefore the answer to the question is true.
The responding variable refers to the variable that changes as the independent variable is being manipulated. In this case, the responding variable is the number of paper clips attracted by the magnet.
An experiment must include a dependent (responding) variable and an independent variable. As the independent variable is manipulated during the experiment, the dependent (responding) variable changes accordingly.
In this case; the independent variable is temperature while the dependent (responding) variable is the number of paper clips attracted by the magnet.
Learn more: brainly.com/question/967776
The relation between the volume and the temperature of the gas is given by Charles's law. The final temperature of the gas at 0.75 liters is -193.8°C.
<h3>What is Charles's law?</h3>
Charles's law was derived from the ideal gas equation and is used to state the relationship between the temperature and the volume of the gas. With a decrease in volume the temperature decreases.
If the pressure is kept constant then with an increase in temperature the volume of the gas expands. The law is given as,
V₁ ÷ T₁ = V₂ ÷ T₂
Given,
Initial volume (V₁) = 2.80 L
Initial temperature (T₁) = 23 °C = 296.15 K
Final volume (V₂) = 0.75 L
Final temperature = T₂
Substituting the values above as:
T₂ = (V₂ × T₁) ÷ V₁
= 0.75 × 296.15 ÷ 2.80
= 79.325 K
Kelvin is converted as, 79.325K − 273.15 = -193.8°C
Therefore, the final temperature is -193.8°C.
Learn more about Charle's law, here:
brainly.com/question/16927784
#SPJ1
Answer:
0.0457 M
Explanation:
The reaction that takes place is:
- 2HBr + Ca(OH)₂ → CaBr₂ + 2H₂O
First we<u> calculate how many moles of acid reacted</u>, using the <em>HBr solution's concentration and volume</em>:
- Molarity = Moles / Volume
- Molarity * Volume = Moles
- 0.112 M * 12.4 mL = 1.389 mmol HBr
Now we <u>convert HBr moles to Ca(OH)₂ moles</u>, using the stoichiometric ratio:
- 1.389 mmol HBr *
= 0.6944 mmol Ca(OH)₂
Finally we <u>calculate the molarity of the Ca(OH)₂ solution</u>, using the <em>given volume and calculated moles</em>:
- 0.6944 mmol Ca(OH)₂ / 15.2 mL = 0.0457 M