This is a neutron induced fission, therefore a neutron will be added to the U²³⁵ to cause the reaction, and thus it will be added to the left side. There will be unknown number of neutrons produced and thus we put this on the right hand side.
n₁ + U²³⁵ = Te¹³⁷ + Zr ⁹⁷ + xn1 ( n1 to mean a neutron of mass 1)
To balance the masses on both sides of the equation;
1 + 235 = 137 +97+ x
x = 2
the end reaction will be
n₁ +U²³⁵ = Te¹³⁷ + Zr⁹⁷ + 2 n₁
<span>The s sublevel has just one orbital, so can contain 2 electrons max. The p sublevel has 3 orbitals, so can contain 6 electrons max. The d sublevel has 5 orbitals, so can contain 10 electrons max. And the 4 sublevel has 7 orbitals, so can contain 14 electrons max.
So, having this in mind, 10 electrons in total can be contained in the 4d sublevel.
</span>
Answer: 0.00867 moldm-3
Explanation:
Since the reaction is 1st order,
Rate of reaction=∆[A]÷t
0.646-0.0146/72.8= 0.00867
Remember that in a first order reaction, the rate of reaction depends on change in the concentration of only one of the reaction species, A in the problem above.
Answer:
265.2amu
Explanation:
Given parameters:
Atomic mass = 254.9amu
Abundance of isotope 1 = 72%
Atomic mass of isotope 1 = 250.9amu
Abundance of isotope 2 = 100 - 72 = 28%
Unknown:
Atomic mass of isotope 2 = ?
Solution:
To find the atomic mass of isotope 2, use the expression below:
Atomic mass = (abundance of isotope 1 x atomic mass of isotope 1) + (abundance of isotope 2 x atomic mass of isotope 2)
Now insert the parameters and find the unknown;
254.9 = (0.72 x 250.9) + (0.28 x Atomic mass of isotope 2)
254.9 = 180.648 + 0.28x atomic mass of isotope 2
254.9 - 180.648 = 0.28x atomic mass of isotope 2
74.25 = 0.28 x atomic mass of isotope 2
Atomic mass of isotope 2 = 265.2amu