<span>Let's </span>assume that water vapor has ideal gas
behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹) and T is temperature in Kelvin.<span>
<span>
</span>P = 1 atm = 101325 Pa (standard pressure)
V = 13.97 L = 13.97 x 10</span>⁻³ m³<span>
n = ?
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 0 °C = 273 K (standard temperature)
<span>
By substitution,
</span>101325 Pa x 13.97x 10</span>⁻³
m³ = n x 8.314 J mol⁻¹ K⁻¹ x 273 K<span>
n = 0.624 mol
<span>
Hence, the moles of water vapor at STP is 0.624 mol.
According to the </span></span>Avogadro's constant, 1 mole of substance has 6.022 × 10²³ particles.
<span>
Hence, number of atoms in water vapor = 0.624 mol x </span>6.022 × 10²³ mol⁻¹
<span> = 3.758 x 10</span>²³<span>
</span>
<span>Synthesis, decomposition, single replacement and double replacement.</span>
Answer:
a reaction in which one element is substituted for another element in a compound
Explanation:
independent variable: how much bread is there
dependant variable: temperature, location, time, size.
hypothesis, the one with the bread will be way more moist than the one without.
control group: no bread at all.
experimental group: brownies with bread
constants: same tupperware, placement, time, size.
Hoped this helped!