<span>When chemical change takes place, the atoms in the reactants rearrange and bond together differently to form one or more new products with different characteristics. </span>
The reaction time of Boris is t(r), so before that, Boris will not have jumped. Thus, H(b)(t) = 0
The vertical displacement will simply be
D(t) = H(a)(t)
Answer:
Here is the complete question:
https://www.chegg.com/homework-help/questions-and-answers/magnetic-field-372-t-achieved-mit-francis-bitter-national-magnetic-laboratory-find-current-q900632
a) Current for long straight wire 
b) Current at the center of the circular coil 
c) Current near the center of a solenoid 
Explanation:
⇒ Magnetic Field due to long straight wire is given by (B),where

Plugging the values,
Conversion
,and 

⇒Magnetic Field at the center due to circular coil (at center) is given by,
So 
⇒Magnetic field due to the long solenoid,
Then
So the value of current are
,
and
respectively.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m