Answer: Option (b) is the correct answer.
Explanation:
In liquid state, particles do have kinetic energy that helps in partially overcoming the intermolecular forces between the molecules. But still the particles are close together and they are able to slide past each other.
So, when we apply pressure on a liquid then its molecules partially gets compressed.
On the other hand, molecules of a solid are held together by strong intermolecular forces of attraction. Hence, they have definite shape and volume. As a result, solids do not get compressed.
In gases and plasma state of matter, molecules are gar away from each other. So, they are able to get completely compressed when a pressure is applied.
Thus, we can conclude that liquid is the state of matter which consists of particles that can be partially compressed.
Because its in group one....which only lose or gain electrons.....thus it will only have oneelectron to fulfill its octect rule
Mass, if you know what element you are working with.
Answer:
letter A. i hope this is correct answer
Answer: 0.0069L
Explanation:
2H2O(l) ---->O2(g) + 4H+(aq) + 4e-
no of moles= it/eF
NO of moles of O2 produced = (Current in Ampere x Time in second)/ (Faraday constant x Number of electrons required)
Moles of O2 produced = (0.02x (60 x 60X1.5 s)/(96485 x 4)
= 0.0002798 moles= 2.798x 10 ^-4moles
Using ideal gas equation,
P V = n R T
Where, P is the pressure,
V is the volume,
n is the number of moles,
R is the gas constant, and T is the temperature
We have, 1 bar = 0.986923 atm
Substituting the values,
V = nRT/P = (2.798 x 10-4moles x 0.08205 L atm mol K x 298 K)/ 0.986923 atm = 0.0069L
Volume of O2 produced = 0.0069L