Answer:
53.6 grams of silver chloride was produced.
Explanation:

Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
Mass of silver nitrate = 50.0 g
Mass of hydrogen chloride = 50.0 g
Mass of silver chloride = x
Mass of nitric acid = 46.4 g
Mass of silver nitrate + Mass of hydrogen chloride =
Mass of silver chloride + Mass of nitric acid
[te]50.0 g+50.0 g=x+46.4 g[/tex]

53.6 grams of silver chloride was produced.
Answer:
detail is given below.
Explanation:
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
The given equation is balanced chemical equation of photosynthesis. There are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
If equation is not balanced,
CO₂ + H₂O → C₆H₁₂O₆ + O₂
It can not follow the law of conservation of mass because mass is not equal on both side of equation.
The first thing we need to do here is to recognize the unit of molarity and the units of the given percentage of nitric acid.
Molarity is mol HNO3 / L of solution. This is our aim
The given percentage is 0.68 g HNO3/ g solution
multiplying this with density to convert g solution into mL solution and dividing with the molecular weight of HNO3 (63 g/mol) to convert g HNO3 to mol. Therefore we obtain
0.016 mol/ mL or 16.23 mol/ L (M)
Answer:
Copper is a metal made up of copper atoms closely packed together. As a result, the electrons can move freely through the metal. For this reason, they are known as free electrons. They are also known as conduction electrons because they help copper be a good conductor of heat and electricity.
Explanation: