Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
The answer is: A) Na3PO4 + 3KOH → 3NaOH + K3PO4, because K retains the same charge throughout the reaction.
This chemical reaction is double displacement reaction - cations (K⁺ and Na⁺) and anions (PO₄³⁻⁻ and OH⁻) of the two reactants switch places and form two new compounds.
Na₃PO₄ is sodium phosphate.
KOH is potassium hydroxide.
NaOH is sodium hydroxide.
K₃PO₄ is potassium phosphate.
According to the mass conservation law, there are same number of atoms on both side of balanced chemical reaction.
Answer:
See explanation
Explanation:
The molecular geometry of an atom is connected to the number of electron pairs that surround it(whether lone pairs or bonding pairs) as well as its hybridization state. We shall now examine the N, P, or S atoms in each of the following compounds.
a)
In H3PO4, P has a tetrahedral molecular geometry and is sp3 hybridized.
b) In NH4NO3
N is sp3 hybridized in NH4^+ and sp2 hybridized in NO3^-. Also, N is tetrahedral in NH4^+ but trigonal planar in NO3^-.
c) In S2Cl2, we expect a tetrahedral geometry but as a result of the presence of two lone pairs on each sulphur atom, the molecular geometry is bent. The sulphur is sp3 hybridized.
d) In K4[O3POPO3], each phosphorus atom is in a tetrahedral molecular geometry and is sp3 hybridized.
Answer:
The correct statement should be The energies of electron are <em>quantized</em> when <em>they are bounded to an atom.</em>
In Quantum Mechanics The term Quantization used to measure the physical entities having certain discrete value. When we say energies of electron are <em>quantized</em> <em>that means it have some specific values</em> that are allowed, that is not continuous range of values.
<em><u>Thanks for joining brainly community! </u></em>
The distance of the object could be much bigger if <span>an object,s parallax cannot be detected. It is because t</span>he parallax of an object is inversely proportional to the object's distance from us. I hope my answer has come to your help. God bless and have a nice day ahead!