Answer:
The nswer to the question is
The maximum fraction of the air in the room that could be displaced by the gaseous nitrogen is 0.548 or 54.8 %
Explanation:
To solve the question we note that
The density of the liquid nitrogen = 0.808g/mL and the volume is 195 L tank (vaporised)
Therefore since density = mass/volume we have
mass = Density × volume = 0.808 g/mL × 195 L × 1000 ml/L =157560 g
In gaseous form the liquid nitrogen density =1.15 g/L
That is density = mass/volume and volume = mass/density = 157560 g/(1.15g/L) or
volume = 137008.69565 L
The dimension of the room = 10 m × 10 m × 2.5 m = 250 m³ and
1 m³ is equivalent to 1000 L, therefore 250 m³ = 250 m³ × 1000 L/m³ = 250000L
Therefore fraction of the volume occupied by the gaseous nitrogen =
137008.69565 L/250000 L = 0.548
Therefore the gaseous nitrogen occpies 54.8% of the room
Answer:
1.71x10²⁷
Explanation:
If we sum 1/2 of (3) + 1/2 of (1):
1/2 (3.) C(s) + 1/2O₂(g) ⇌ CO(g), K₃ = √2.10×10⁴⁷ = 4.58x10²³
1/2 (1) 1/2CO₂(g) + 3/2H₂(g) ⇌ 1/2CH₃OH(g) + 1/2H₂O(g), K₁ = √1.40×10² = 11.8
C(s) + 1/2O₂(g) +<u> 1/2CO₂(g) </u>+<u> 3/2H₂(g</u>) ⇌ 1/2CH₃OH(g) + <u>1/2H₂O(g)</u> + <u>CO(g)</u>
K' = 4.58x10²³ * 11.8 = 5.42x10²⁴
+1/2 (2):
<u>1/2 CO(g)</u> +<u> 1/2H₂O(g)</u> ⇌<u> 1/2CO₂(g)</u> + <u>1/2H₂</u> (g), K = √1.00×10⁵ = 316.2
C(s) + 1/2O₂(g) + H₂(g) ⇌ 1/2 CHO₃H(g) + 1/2CO(g)
K'' = 5.42x10²⁴* 316.2 =
<h3>1.71x10²⁷</h3>
Explanation:
i dont know 8th and i am not sure baout carbonic acid in 10 th but they are balanced
7.4x10^23 = molecules of silver nitrate sample
6.022x10^23 number of molecules per mole (Avogadro's number)
Divide molecules of AgNO3 by # of molecules per mol
7.4/6.022 = 1.229 mols AgNO3 (Sig Figs would put this at 1.3)
(I leave off the x10^23 because they both will divide out)
Use your periodic table to find the molar weight of silver nitrate.
107.868(Ag) + 14(N) + 3(16[O]) = 169.868g/mol AgNO3
Now multiply your moles of AgNO3 with your molar weight of AgNO3
1.229mol x 169.868g/mol = 208.767g AgNO3