Unburned hydrocarbon on reacting with oxygen undergoes combustion reaction. However, the activation energy of this reaction is significantly high. When a catalyst like Pd is added to the reaction system, it provides active sites for the reaction to occur. It acts are a heterogeneous catalyst. It is pertinent of note that catalyst is refereed as heterogeneous, when it exist in different phase as compared to reactant and products. In present case, reactants and products are in gas phase, while catalyst is in solid phase. Due to availability of larger surface area at active site of Pd, activation energy of reaction decreases and decrease in activation energy favors higher reaction rates.
Hey there!
Values Ka1 and Ka2 :
Ka1 => 8.0*10⁻⁵
Ka2 => 1.6*10⁻¹²
H2A + H2O -------> H3O⁺ + HA⁻
Ka2 is very less so I am not considering that dissociation.
Now Ka = 8.0*10⁻⁵ = [H3O⁺] [HA⁻] / [H2A]
lets concentration of H3O⁺ = X then above equation will be
8.0*10−5 = [x] [x] / [0.28 -x
8.0*10−5 = x² / [0.28 -x ]
x² + 8.0*10⁻⁵x - 2.24 * 10⁻⁵
solve the quardratic equation
X =0.004693 M
pH = -log[H⁺]
pH = - log [ 0.004693 ]
pH = 2.3285
Hope that helps!
Answer:
A = 0.023 m
Explanation:
The relation between the frequency of a radiation and its wavelength is given by the following expression.
where,
c is the speed of light (it has a constant value of 3.00 x 108 m/s)
A is the wavelength of the radiation v is the frequency of the radiation
In this case, the frequency is 13 GHz = 13 x
10° Hz = 13 x 1o° s-
The wavelength associated with this frequency is:
A = c/v = (3.00 x 10° m/s)/(13 x 10° s-") = 0.023
If it gains an electron it will be negatively charged and if it loses an electron it will be positively charged
Answer:
air
Explanation:
air becuae aang is the avatar