Acceleration is found if we have the force and mass.
With the following equation: F = ma, we can find the missing values.
F = 25n
M = 0.5 kg
a = ?
a = f/m
a = 25/0.5
a = 50
a = 50 m/s
So, the acceleration is 50 m/s^2
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
The distance of the telescope from the Earth's center is

, the gravitational force is

and the mass of the Earth is

, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
(30, 5)
(10, 1)
change of y / change of x
= (30 - 10) / (5 - 1)
= 20 /4
= 5
Answer:
The measured redshift is z =2
Explanation:
Since the object is traveling near light speed, since v/c = 0.8, then we have to use a redshift formula for relativistic speeds.

Finding the redshift.
We can prepare the formula by dividing by lightspeed inside the square root to both numerator and denominator to get

Replacing the given information


Thus the measured redshift is z = 2.
Answer:
Electric potential, E = 2100 volts
Explanation:
Given that,
Electric field, E = 3000 N/C
We need to find the electric potential at a point 0.7 m above the surface, d = 0.7 m
The electric potential is given by :


V = 2100 volts
So, the electric potential at a point 0.7 m above the surface is 2100 volts. Hence, this is the required solution.