Answer:
Height of cliff = S = 20 m (Approx)
Explanation:
Given:
Initial velocity = 8 m/s
Distance s = 16 m
Starting acceleration (a) = 0
Computation:
s = ut + 1/2a(t)²
16 = 8t
t = 2 sec
Height of cliff = S
Gravitational acceleration = 10 m/s
S = 1/2a(t)²
S = 1/2(10)(2)²
Height of cliff = S = 20 m (Approx)
A force of 660 n stretches a certain spring a distance of 0.300 m. what is the potential energy of the spring when a 70.0 kg mass hangs vertically from it?
I'm pretty sure that it's 815.
<h3>Question -:</h3>
The Earth orbits around the sun because the gravitational force that the sun
exerts on the Earth:
O A. causes Earth's acceleration toward the sun.
O B. is very small because the sun is so far from the Earth.
O c. is smaller than the force the Earth exerts on the sun.
O D. pushes the Earth away from the sun.
<h3>Answer -:</h3>
O A. causes Earth's acceleration toward the sun.
<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>
In the motion of the medium particles in a longitudinal wave, the medium vibrates parallel to the direction of the wave.
<h3>What is a longitudinal wave?</h3>
A longitudinal wave is a wave that is transversing along the length. When the displacement of medium and travel of wave is the same in that condition wave is known as the longitudinal wave.
It requires some medium to travel. A mechanical and sound wave is an example of a longitudinal wave.
Hence in the motion of the medium particles in a longitudinal wave, the medium vibrates parallel to the direction of the wave.
To learn more about the longitudinal wave refer to the link;
brainly.com/question/8497711