Answer:
C. rollback
Explanation:
The retina of the eye is located inside the eye making it impossible for the retina to roll back. Only the eye itself can rollback.
Answer:
1.15 m/s
Explanation:
Part of the question is missing. Found the missing part on google:
"1. A hanging mass of 1500 grams compresses a spring 2.0 cm. Find the spring constant in N/m."
Solution:
First of all, we need to find the spring constant. We can use Hooke's law:

where
is the force applied to the spring (the weight of the hanging mass)
x = 2.0 cm = 0.02 m is the compression of the spring
Solving for k, we find the spring constant:

In the second part of the problem, the spring is compressed by
x = 3.0 cm = 0.03 m
So the elastic potential energy of the spring is

This energy is entirely converted into kinetic energy of the cart, which is:

where
m = 500 g = 0.5 kg is the mass of the cart
v is its speed
Solving for v,

The answer for that is True.
By reading the fine details of the question, carefully and analytically, I have determined that there's no list of modifications to choose from.
The strength of the magnetic field of a solenoid depends on the electric current in its coil windings, the number of wire turns in its coil windings, and the material in its core.
In order to <em>DE</em>crease the strength of its magnetic field, any one or more of these steps could do the job:
-- DEcrease the electric current in its coil windings. This can be accomplished by decreasing the voltage of the power source that energizes the coil, and/or increasing the resistance of the wire in the coil.
-- DEcrease the number of wire turns in the coil.
-- If the solenoid has anything in its core, change the core to something with a lower magnetic 'permeability'. An Iron core will produce the greatest magnetic field strength. Air, vacuum, or NO core will produce the lowest magnetic field strength.
Answer:
Procyon appears brighter in the sky
Explanation:
Apparent magnitude of star Antares = 1.0
Apparent magnitude of star Procyon = 0.4
Pogson's Ratio
m₂-m₁ = -2.50 log(B₂/B₁)
where, m is the apparent magnitude
B = Brightness of star or flux coming towards us (W/m²)
∴Larger magnitudes correspond to fainter stars so here 1>0.4 which means Antares appears dimmer and Procyon appears brighter.