Answer: 5.8 m/s squared
Explanation: just got that question lol
Answer:
R = 9880 yd * 3 ft/yd / 5280 ft/mi = 5.61 mi
If you do it in steps
R = 9880 yd * 3 ft/yd = 29640 ft
R = 29640 ft / 5280 ft/mi = 5.61 mi
True, They contain old stars and posses little gas or dust
As we know by work energy theorem
total work done = change in kinetic energy
so here we can say that wok done on the box will be equal to the change in kinetic energy of the system

initial the box is at rest at position x = x1
so initial kinetic energy will be ZERO
at final position x = x2 final kinetic energy is given as

now work done is given as

so we can say

so above is the work done on the box to slide it from x1 to x2
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>