1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex777 [14]
2 years ago
6

S Five particles with equal negative charges -q are placed symmetrically around a circle of radius R. Calculate the electric pot

ential at the center of the c
Physics
1 answer:
Scrat [10]2 years ago
6 0

The four distinct charges' combined potentials make up the potential in the square's center. The amount of the charge and the distance from the charge both affect the potential caused by a point charge.

Therefore, the center's total potential is V=4V1=ks4 q.

<h3>What is a charge?</h3>

Due to the physical characteristic of electric charge, charged material experiences a force when it is exposed to an electromagnetic field. An object that has no net charge is said to be neutral. Classical electrodynamics is the name given to an earlier theory of the interactions of charged particles.

You can have positive or negative electric charges (commonly carried by protons and electrons respectively). opposing charges attract one another whereas similar charges repel one another.

To learn more about charge from the given link:

brainly.com/question/9194793

#SPJ4

You might be interested in
A battery is used to power a flashlight. When the flashlight is in use, what type of energy is lost during energy transformation
diamong [38]

Answer:

The answer is chemical energy

4 0
3 years ago
Read 2 more answers
What is Motion ????? ​
Mama L [17]

Answer:

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

5 0
3 years ago
Read 2 more answers
A car is traveling at a velocity of 22 m/s when the driver puts on the brakes
Brums [2.3K]

The car’s velocity at the end of this distance is <em>18.17 m/s.</em>

Given the following data:

  • Initial velocity, U = 22 m/s
  • Deceleration, d = 1.4 m/s^2
  • Distance, S = 110 meters

To find the car’s velocity at the end of this distance, we would use the third equation of motion;

Mathematically, the third equation of motion is calculated by using the formula;

V^2 = U^2 + 2dS

Substituting the values into the formula, we have;

V^2 = 22 + 2(1.4)(110)\\\\V^2 = 22 + 308\\\\V^2 = 330\\\\V^2 = \sqrt{330}

<em>Final velocity, V = 18.17 m/s</em>

Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>

<em></em>

Read more: brainly.com/question/8898885

8 0
2 years ago
STUDY QUESTIONS
tankabanditka [31]

Answer:

The blade of sharpener is made up of iron. Iron is a magnetic material because of this pencil sharpener gets attracted by the poles of a magnet although the body is made up of plastic.

5 0
3 years ago
Where would you find an inclined plane in a fan
ivanzaharov [21]
The blades that spin around in the fan, because they are flat and produce work
8 0
3 years ago
Read 2 more answers
Other questions:
  • Select the best terms from the drop-down menus that fit the nuclear medicine descriptions.
    9·2 answers
  • An electron has an uncertainty in its position of 587 pm . part a what is the uncertainty in its velocity?
    8·1 answer
  • A rubber toy duck is at rest on an inclined plane. When the angle of inclination of the plane is increased to 36.0°, the toy duc
    14·1 answer
  • 3. Name and describe 3 things that can occur when light hits and object. Provide an example of each.
    11·1 answer
  • If an astronaut travels to different planets, which of the following planets will the astronaut’s weight be the same as on Earth
    10·2 answers
  • On his way to class, a student on a skateboard is accelerating on a downhill stretch. Which of the following statements is true?
    8·1 answer
  • What is gravity at north pole, South pole and at different point on the equatorial regions. Give reasoning for your answers why
    5·1 answer
  • If Earth were the size of a grape, how big would the Moon be? How far away would the Moon be from the Earth? How large would the
    6·1 answer
  • A group of students left school at 8:00 am on a field trip to a science museum 90 miles away. Which best describes the average s
    13·1 answer
  • Menghitung jisim molekul relatif dan jisim formula relatif​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!