The equilibrium membrane potential is 41.9 mV.
To calculate the membrane potential, we use the <em>Nernst Equation</em>:
<em>V</em>_Na = (<em>RT</em>)/(<em>zF</em>) ln{[Na]_o/[Na]_ i}
where
• <em>V</em>_Na = the equilibrium membrane potential due to the sodium ions
• <em>R</em> = the universal gas constant [8.314 J·K^(-1)mol^(-1)]
• <em>T</em> = the Kelvin temperature
• <em>z</em> = the charge on the ion (+1)
• <em>F </em>= the Faraday constant [96 485 C·mol^(-1) = 96 485 J·V^(-1)mol^(-1)]
• [Na]_o = the concentration of Na^(+) outside the cell
• [Na]_i = the concentration of Na^(+) inside the cell
∴ <em>V</em>_Na =
[8.314 J·K^(-1)mol^(-1) × 293.15 K]/[1 × 96 485 J·V^(-1)mol^(-1)] ln(142 mM/27 mM) = 0.025 26 V × ln5.26 = 1.66× 25.26 mV = 41.9 mV
Answer:
The answer to your question is 1.25 M
Explanation:
Data
Molarity 1 = ?
Volume 1 = 60 ml
Molarity 2 = 0.5 M
Volume 2 = 150 ml
Process
1.- Write the dilution formula
Molarity 1 x Volume 1 = Molarity 2 x Volume 2
-Solve for Molarity 1
Molarity 1 = Molarity 2 x Volume 2 / Volume 1
-Substitution
Molarity 1 = (0.5)(150) / 60
-Simplification
Molarity = 75 / 60
-Result
Molarity = 1.25 M
Most of the mass of an atom is located in the (nucleus), and most of the volume is taken up by the (electron clouds).
The ones in the parenthesis are your answers.
Hope this helps!
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL