Answer:
0.924 g
Explanation:
The following data were obtained from the question:
Volume of CO2 at RTP = 0.50 dm³
Mass of CO2 =?
Next, we shall determine the number of mole of CO2 that occupied 0.50 dm³ at RTP (room temperature and pressure). This can be obtained as follow:
1 mole of gas = 24 dm³ at RTP
Thus,
1 mole of CO2 occupies 24 dm³ at RTP.
Therefore, Xmol of CO2 will occupy 0.50 dm³ at RTP i.e
Xmol of CO2 = 0.5 /24
Xmol of CO2 = 0.021 mole
Thus, 0.021 mole of CO2 occupied 0.5 dm³ at RTP.
Finally, we shall determine the mass of CO2 as follow:
Mole of CO2 = 0.021 mole
Molar mass of CO2 = 12 + (2×16) = 13 + 32 = 44 g/mol
Mass of CO2 =?
Mole = mass /Molar mass
0.021 = mass of CO2 /44
Cross multiply
Mass of CO2 = 0.021 × 44
Mass of CO2 = 0.924 g.
Answer:
Explanation:
Of course you could do the separation chemically. Dissolve the salt up in water, pass thru a filter, wash the iron filings with ethanol, which would encourage the salt to precipitate from solution.
I do hope I helped you! :)
Answer: Yes we agree with the student's claim.
Explanation:
When the molecules are present in smaller size, more reactants can react as decreasing the size increases the surface area of the reactants which will enhance the contact of molecules.Hence, more products will form leading to increased rate of reaction.
On increasing the temperature will make more reactant molecules will have sufficient energies to cross the energy barrier and thus the number of effective collisions increases, thus leading to more products and increased rate of reaction.
When the solution is stirred , the molecule's kinetic energy and thus the rate of reaction increases.
Thus smaller size, stirring and increase of temperature will make the solution quickly.
Answer:
When melted or dissolved in water.
Explanation:
Potassium bromide in its solid form contains ions, which are charged atoms. Through the heating process, the melted potassium bromide becomes an ionic liquid. If solid potassium bromide is dissolved, for example in water, the resulting release of ions allows it to conduct electricity.