Peter has been seeing a counselor for problems in his sexual life.
Peter’s counselor referred him to an urologist to treat his problem.
Which disorder is most likely to be the cause of Peter’s problems?
<span>-erectile dysfunction or urinary problems</span>
Answer:
stamina
Explanation:
a proper focus and hardwork for the achievement
Life processes depend in large part on solutions. Oxygen from the lungs goes into solution in the blood plasma, unites chemically with the hemoglobin in the red blood cells, and is released to the body tissues. The products of digestion also are carried in solution to the different parts of the body. The ability of liquids to dissolve other fluids or solids has many practical applications. Chemists take advantage of differences in solubility to separate and purify materials and to carry out chemical analysis. Most chemical reactions occur in solution and are influenced by the solubilities of the reagents. Materials for chemical manufacturing equipment are selected to resist the solvent action of their contents.
Answer:
As stated in Chapter 1, the translation of human energy requirements into recommended intakes of food and the assessment of how well the available food supplies or diets of populations (or even of individuals) satisfy these requirements require knowledge of the amounts of available energy in individual foods. Determining the energy content of foods depends on the following: 1) the components of food that provide energy (protein, fat, carbohydrate, alcohol, polyols, organic acids and novel compounds) should be determined by appropriate analytical methods; 2) the quantity of each individual component must be converted to food energy using a generally accepted factor that expresses the amount of available energy per unit of weight; and 3) the food energies of all components must be added together to represent the nutritional energy value of the food for humans. The energy conversion factors and the models currently used assume that each component of a food has an energy factor that is fixed and that does not vary according to the proportions of other components in the food or diet.
Explanation:
The unit of energy in the International System of Units (SI)[8] is the joule (J). A joule is the energy expended when 1 kg is moved 1 m by a force of 1 Newton. This is the accepted standard unit of energy used in human energetics and it should also be used for the expression of energy in foods. Because nutritionists and food scientists are concerned with large amounts of energy, they generally use kiloJoules (kJ = 103 J) or megaJoules (MJ = 106 J). For many decades, food energy has been expressed in calories, which is not a coherent unit of thermochemical energy. Despite the recommendation of more than 30 years ago to use only joules, many scientists, non-scientists and consumers still find it difficult to abandon the use of calories. This is evident in that both joules (kJ) and calories (kcal) are used side by side in most regulatory frameworks, e.g. Codex Alimentarius (1991). Thus, while the use of joules alone is recommended by international convention, values for food energy in the following sections are given in both joules and calories, with kilojoules given first and kilocalories second, within parenthesis and in a different font (Arial 9). In tables, values for kilocalories are given in italic type. The conversion factors for joules and calories are: 1 kJ = 0.239 kcal; and 1 kcal = 4.184 kJ.
Modify the physical and social environment.
Reduce exposure to community-level risks.
Street outreach and community norm change.