Answer:
Step-by-step explanation:
(8x²-18x+10)/(x²+5)(x-3)
express the expression as a partial fraction:
(8x²-18x+10)/[(x^2+5)(x-3)] =A/x-3 +bx+c/x²+5
both denominator are equal , so require only work with the nominator
(8x²-18x+10)=(x²+5)A+(x-3)(bx+c)
8x²-18x+10= x²A+5A+bx²+cx-3bx-3c
combine like terms:
x²(A+b)+x(-3b+c)+5A-3c
(8x²-18x+10)
looking at the equation
A+b=8
-3b+c=-18
5A-3c=10
solve for A,b and c (system of equation)
A=2 , B=6, and C=0
substitute in the value of A, b and c
(8x²-18x+10)/[(x^2+5)(x-3)] =A/x-3 +(bx+c)/x²+5
(8x²-18x+10)/[(x^2+5)(x-3)] = 2/x-3 + (6x+0)/(x²+5)
(8x²-18x+10)/[(x^2+5)(x-3)] =
<h2>2/(x-3)+6x/x²+5</h2>
(4x+2)/[(x²+4)(x-2)]
(4x+2)/[(x²+4)(x-2)]= A/(x-2) + bx+c/(x²-2)
(4x+2)=a(x²-2)+(bx+c)(x-2)
follow the same step in the previous answer:
the answer is :
<h2>(4x+2)/[(x²+4)(x-2)]= 5/4/(x-2) + (3/2 -5x/4)/(x²+4)</h2>
Answer:
48 + 18√13 cm²
Step-by-step explanation:
HC = BC/2 = 4m/2 = 2 m
AC = √AH² + HC² = √9 + 4 = √13
A = 2×A(ABC) + 2×A(ACFD) + A(BCFE)
= 2×AH×BC/2 + 2×AC×CF + BC×CF
= 2×3×4/2 + 2×√13×9 + 4×9
=12 + 18√13 + 36
= 48 + 18√13 cm²
Answer:
Part a) Rectangle
Part b) Triangle
Step-by-step explanation:
<u><em>The picture of the question in the attached figure N 1</em></u>
Part A) A cross section of the rectangular pyramid is cut with a plane parallel to the base. What is the name of the shape created by the cross section?
we know that
When a geometric plane slices any right pyramid so that the cut is parallel to the plane of the base, the cross section will have the same shape (but not the same size) as the base, So, in the case of a right rectangular pyramid, the cross section is a rectangle
Part b) If a cross section of the rectangular pyramid is cut perpendicular to the base, passing through the top vertex, what would be the shape of the resulting cross section?
we know that
Cross sections perpendicular to the base and through the vertex will be triangles
see the attached figure N 2 to better understand the problem
Step-by-step explanation:
<em>x² - x - 20 = 0</em>
<em>x²</em><em> </em><em>-</em><em> </em><em>(</em><em>5</em><em>-</em><em>4</em><em>)</em><em> </em><em>x </em><em>-</em><em> </em><em>2</em><em>0</em><em> </em><em>=</em><em> </em><em>0</em><em> </em>
<em>x²</em><em> </em><em>-</em><em> </em><em>5x </em><em>+</em><em> </em><em>4x </em><em>-</em><em>2</em><em>0</em><em> </em><em>=</em><em> </em><em>0</em>
<em>x </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>5</em><em>)</em><em> </em><em>+</em><em> </em><em>4</em><em> </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>0</em>
<em>(</em><em>x </em><em>-</em><em> </em><em>5</em><em>)</em><em> </em><em>(</em><em>x+</em><em> </em><em>4)</em><em> </em><em>=</em><em> </em><em>0</em>
<em>Either</em><em>. </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em>x </em><em>-</em><em> </em><em>5</em><em> </em><em>=</em><em> </em><em>0</em>
<em>x </em><em>=</em><em> </em><em>5</em>
<em>Or, </em>
<em>x </em><em>+</em><em> </em><em>4</em><em> </em><em>=</em><em> </em><em>0</em><em> </em>
<em>x </em><em>=</em><em> </em><em>-</em><em>4</em>
Answer:

Step-by-step explanation:
Given Equation:
Equation:1
Equation:2
Dividing Equation:2 by '3' both the sides:
or
Equation:3
Putting the vale of 'x' in Equation:1


Subtracting '3' both sides



Putting value of 'y' in Equation:3


The solution of the equations is :
