Answer:
If we’re talking about objects on the Earth, the gravitational potential energy is given by:
Explanation:
PEg=mgh
so the energy is proportional to the mass ( m ), but also to the strength of the gravitational field ( g ), and the height ( h ) to which the mass is lifted.
Mass (m)=55kg
acceleration (a)=9.81 m/s^2, this is the acceleration due to gravity.
initial velocity=0m/s. The skydiver doesn’t start with any speed because she is on the plane or helicopter.
final velocity=16m/s This is the velocity (speed) the skydiver reaches
The equation we use is KE=.5mv^2
Kinetic energy=.5 mass x velocity^2
KE=.5(55kg)(16m/s)^2
KE=.5(55kg)(256m/s)
KE=.5(14080J)
J=Joules
KE=7040J
Kinetic energy is 7040 Joules (J)
Hope this helps
A. 10 rations = 1 deca-ration.
b. 2000 mockingbirds = 2 x 10³ = 2 kilo-mockingbirds.
c. 10⁻⁵ phones = 1 micro-phones.
d. 10⁻⁹ goats = 1 nano-goats.
e. 1018 miners = 1.018 x 10³ = 1.018 kilo-miners.
Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Answer:
The torque about the origin is 
Explanation:
Torque
is the cross product between force
and vector position
respect a fixed point (in our case the origin):

There are multiple ways to calculate a cross product but we're going to use most common method, finding the determinant of the matrix:
![\overrightarrow{r}\times\overrightarrow{F} =-\left[\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ F1_{x} & F1_{y} & F1_{z}\\ r_{x} & r_{y} & r_{z}\end{array}\right]](https://tex.z-dn.net/?f=%20%5Coverrightarrow%7Br%7D%5Ctimes%5Coverrightarrow%7BF%7D%20%3D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Chat%7Bi%7D%20%26%20%5Chat%7Bj%7D%20%26%20%5Chat%7Bk%7D%5C%5C%20F1_%7Bx%7D%20%26%20F1_%7By%7D%20%26%20F1_%7Bz%7D%5C%5C%20r_%7Bx%7D%20%26%20r_%7By%7D%20%26%20r_%7Bz%7D%5Cend%7Barray%7D%5Cright%5D%20)


