Answer:
a= 17.877 m/s² : Magnitude of the acceleration of the flea
β = 88.21° : Direction of the acceleration of the flea
Explanation:
Conceptual analysis
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Problem development
Look at the flea free body diagram in the attached graphic
The acceleration is presented in the direction of the resultant force (R) applied over the flea .


R= 10.905*10⁻⁶ N
We apply the formula (1) to calculate the magnitude of the acceleration of the flea
∑F = m*a m = 6.1 * 10⁻⁷ kg
R = m*a
a= R/m
a= (10.905*10⁻⁶) / (6.1 * 10⁻⁷ )
a= 17.877 m/s²
β: Direction and magnitude of the acceleration of the flea


β = 88.21°
Answer: Option (C) is the correct answer.
Explanation:
When we heat a fluid then the movement within the fluid makes hot (less dense) material to rise and cooler (more denser) material to sink at the bottom. This process is known as convection.
Thus, in the diagram hot (less dense) water will rise and cooler (more dense) water sinks at the bottom.
Therefore, we can conclude that according to the arrow the label belongs to cooler water sinks.
Answer:
<h2>103 Joules</h2>
Explanation:
In this problem we are required to find the potential energy possessed by the television
Given data
mass of television m = 15 kg
height added above the ground, h= 1-0.3 = 0.7 m
acceleration due to gravity g = 9.81 m/s^2
apply the formula for potential energy we have
P.E= m*g*h
P.E = 15*9.81*0.7 = 103 Joules
Answer:
x=0.46m, speed=7.9m/s
Explanation:
Using the concept of conservation of energy:
1. kinetic energy of mass m and velocity v: 
2. gravitational potential energy of mass m, grav. acc. g and height h: 
3. potential energy in a spring with spring constant k and displacement from equilibrium x: 
Calculating x:


Calculating the speed:



Solving for
:

Answer:
A parallel circuit.
In a series circuit the current must flow thru the resistances in any particular branch.