Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
If the amount of electrical energy is 50 Joules before the conversions, then it would be 50 Joules after the conversion.
According to law of conservation of energy, we cannot create or destroy energy so it remains constant
Hope this helps!
Answer:
B.
Explanation:
an individual learns to disassociate himself from a stimulus.
Answer:
3. Kinetic energy of the system is maximum when potential energy is minimum.
Explanation:
Given that
Mass of block= m
Spring constant =K
Table is friction less.
As we know that in oscillatory motion ,when kinetic energy is maximum then potential energy will become minimum.
At the mean position:
Kinetic energy is maximum.
Potential energy is minimum.
At the extreme position:
Kinetic energy is minimum.
Potential energy is maximum.
At the mean position velocity of block will be maximum that is why it have maximum kinetic energy and at the extreme position the velocity of block will be minimum that is why it have minimum kinetic energy.
So from above we can say that kinetic energy of the system is maximum when potential energy is minimum.