Answer: There are 0.5 grams of barium sulfate are present in 250 of 2.0 M
solution.
Explanation:
Given: Molarity of solution = 2.0 M
Volume of solution = 250 mL
Convert mL int L as follows.

Molarity is the number of moles of solute present in liter of solution. Hence, molarity of the given
solution is as follows.

Thus, we can conclude that there are 0.5 grams of barium sulfate are present in 250 of 2.0 M
solution.
<span>Classify is the answer hope this helps :)</span>
Answer:
6,8 g
Explanation:
c = 4.18 J/(g * °C) = 4180 J / (kg * °C)
= 25 °C
= 36,4 °C
Q = 325 J
The formula is: Q = c * m * (
)
m =
Calculating:
m = 325 / 4180 * (36,4 - 25) ≈ 0,0068 kg = 6,8 g
430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
<h3>What is Molarity?</h3>
- The amount of a substance in a specific volume of solution is known as its molarity (M).
- The number of moles of a solute per liter of a solution is known as molarity.
<h3>Calculation of Required amount of AgCl</h3>
Remember that mol/L is the unit of molarity (M).
We can compute the necessary number of moles of solute by multiplying the concentration by the liters of solution, according to dimensional analysis.
0.75L×4.0M=3.0mol
Then, using the periodic table's molar mass for AgCl, convert from moles to grams:
3.0mol×143.321gmol=429.963g
The final step is to round to the correct significant figure, which in this case is two: 430g.
Hence, 430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
Learn more about Molarity here:
brainly.com/question/8732513
#SPJ4
Answer:
The energy released will be -94.56 kJ or -94.6 kJ.
Explanation:
The molar mass of methane is 16g/mol
The given reaction is:

the enthalpy of reaction is given as ΔH = -890.0 kJ
This means that when one mole of methane undergoes combustion it gives this much of energy.
Now as given that the amount of methane combusted = 1.70g
The energy released will be:
